Hausleitner, W. (1), J. Weingrill(1), F. Moser (1), J. -D

Slides:



Advertisements
Similar presentations
CRYOSAT WORKSHOP ESRIN – 8 to 10 March 2005 Cryosat Data Processing in Near Real Time for Oceanographic Applications J. BENVENISTE - ESA/ESRIN, Italy OZ.
Advertisements

RA-2 & MWR QWG meeting – ESA/ESRIN – 24 March, 2003 Envisat RA-2 and MWR Events since October 2002 Pierre Féménias ESA/ESRIN.
Page - 1 RA2 CCVT meeting March 2003 F-PAC validation context CMA chain has to be inline with the algorithms approved by ESA and used for the prototype.
RA-2 M. Roca 1, R. Francis 1, C. Zelli 2, S. Laxon 3, H. Jackson 1 and all the Absolute Calibration Team RA-2 Absolute Range and Sigma-0 Calibration &
Mapping with the Electronic Spectrum
Retracking & SSB Splinter OSTST ‘07 Retracking and SSB Splinter Report Juliette Lambin and Phil Callahan March 14, 2007 Hobart, Tasmania.
OSTM/Jason-2 and AltiKa new tracking modes J. Lambin, J.-D. Desjonquères, N. Steunou, CNES J. Helbert, NOVELTIS.
04 Feb 2008_rkraney COASTAL ALTIMETER WORKSHOP 1 The Delay-Doppler Altimeter R. K. Raney Briefing for the Coastal Altimetry Workshop Johns Hopkins University.
C. VINCENT LGGE/CNRS DORIS DAYS 2-3 May 2000 Toulouse, France. DORIS campaigns at Dome Concordia, Antarctica in 1993 and C. Vincent 1, JJ. Valette.
SAR Altimetry in Coastal Zone: Performances, Limits, Perspectives Salvatore Dinardo Serco/ESRIN Bruno Lucas Deimos/ESRIN Jerome Benveniste ESA/ESRIN.
Coastal Altimetry Workshop February 5-7, 2008 Organized by: Laury Miller, Walter Smith: NOAA/NESDIS Ted Strub, Amy Vandehey: CIOSS/COAS/OSU With help from.
MR P.Durkee 5/20/2015 MR3522Winter 1999 MR Remote Sensing of the Atmosphere and Ocean - Winter 1999 Active Microwave Radar.
Time Transfert by Laser Link T2L2 On Jason 2 OCA –UMR Gemini Grasse – FRANCE E. Samain – Principal.
ASIC**3 Workshop -- May 2006 Measuring Global Sea Level Rise With Satellite Radar Altimetry ASIC**3 Workshop -- May 2006 Laury Miller NOAA/NESDIS Lab for.
Monitoring Jason-1 and TOPEX/POSEIDON from a California Offshore Platform: Latest Results from the Harvest Experiment Bruce Haines and Shailen Desai Jet.
Satellite observation systems and reference systems (ae4-e01) Signal Propagation E. Schrama.
Active microwave systems (1) Satellite Altimetry
Progress in sub-picosecond event timing Ivan Prochazka*, Petr Panek presented at 16 th International Workshop on Laser Ranging Poznan, Poland, October.
Remote Sensing: John Wilkin Active microwave systems (1) Satellite Altimetry IMCS Building Room 214C ext
Report from CNSA 16th GSICS Executive Panel, Boulder, May 2015 Peng Zhang, Jun Gao.
Radar: Acronym for Radio Detection and Ranging
Chapter 8: Measuring sealevel. Sea Level and Pressure Pressure and sea level measurements are of special interest in geophysical studies, and few other.
Monitoring the Global Sea Level Rise Budget with Jason, Argo and GRACE Observations Eric Leuliette and Laury Miller NOAA/Laboratory for Satellite Altimetry.
DORIS - DAYS Toulouse May 2-3, 2000 DORIS Doppler Orbitography and Radiopositioning Integrated by Satellite  Basic system concept  Main missions  Schedules.
ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München
The Global Positioning System
ODINAFRICA/GLOSS Sea Level Training Course
ET- 3rd Indo-French Workshop on Megha-Tropiques, October ALTIKA / OCEANSAT3 ISRO / CNES mission Prepared by E. Thouvenot (CNES)
Sea-ice freeboard heights in the Arctic Ocean from ICESat and airborne laser H. Skourup, R. Forsberg, S. M. Hvidegaard, and K. Keller, Department of Geodesy,
Mission Planning and SP1. Outline of Session n Standards n Errors n Planning n Network Design n Adjustment.
RADAR Detection of Extensive Air Showers Nils Scharf III. Physikalisches Institut A Bad Honnef Nils Scharf III. Physikalisches Institut A Bad.
Österreichische Akademie der Wissenschaften (ÖAW) / Institut für Weltraumforschung (IWF) Schmiedlstraße 6, 8042 Graz, Austria, Tel.: +43/316/ ,
Coastal Altimetry Workshop - February 5-7, 2008 CNES initiative for altimeter processing in coastal zone : PISTACH Juliette Lambin – Alix Lombard Nicolas.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Center for Satellite Applications.
OC3522Summer 2001 OC Remote Sensing of the Atmosphere and Ocean - Summer 2001 Active Microwave Radar.
Satellite Altimetry - possibilities and limitations
Space Geodesy (1/3) Geodesy provides a foundation for all Earth observations Space geodesy is the use of precise measurements between space objects (e.g.,
IRI Workshop 2005 TEC Measurements with Dual-Frequency Space Techniques and Comparisons with IRI T. Hobiger, H. Schuh Advanced Geodesy, Institute of Geodesy.
Sea Level Change Measurements: Estimates from Altimeters Understanding Sea Level Rise and Variability June 6-9, 2006 Paris, France R. S. Nerem, University.
GEOF334 – Spring 2010 Radar Altimetry Johnny A. Johannessen Nansen Environmental and Remote Sensing Center, Bergen, Norway.
Faculty of Applied Engineering and Urban Planning Civil Engineering Department Introduction to Geodesy and Geomatics Position, Positioning Modes, and the.
Data management: Data sources & Quality control. Sea level measurements.
Main tasks  2 kHz distance measurements to 60 satellites  Precision: 2.5 mm single shot;
Laser-Astrodynamics, Space Tests of Relativity, and Gravitational Wave Astronomy 3 rd International ASTROD Symposium – Beijing, China – July 2006 TIME.
Philip Moore Jiasong Wang School of Civil Engineering and Geosciences University of Newcastle upon Tyne Newcastle upon Tyne NE1 7RU
SWOT Near Nadir Ka-band SAR Interferometry: SWOT Airborne Experiment Xiaoqing Wu, JPL, California Institute of Technology, USA Scott Hensley, JPL, California.
OSTST Hobart 2007 – Performance assessment Jason-1 data M.Ablain, S.Philipps, J.Dorandeu, - CLS N.Picot - CNES Jason-1 GDR data Performance assessment.
Satellite Communications
IWF/ÖAW GRAZ Jason-2 Altimeter Calibration Status Quo Walter Hausleitner, Jörg Weingrill Altimeter Calibration Workshop 2010 Graz, Austria.
1 SVY 207: Lecture 12 GPS Error Sources: Part 2 –Satellite: ephemeris, clock, S/A, and A/S –Propagation: ionosphere, troposphere, multipath –Receiver:antenna,
Altimetry for coastal oceanography in Australia -an assessment of PISTACH David Griffin, Madeleine Cahill, Jim Mansbridge, Neil White.
MULTI-FREQUENCY, MULTI-POLARIZATION AND ANGULAR MEASUREMENTS OF BARE SOIL, SNOW AND WATER ICE MICROWAVE REFLECTION AND EMISSION BY C-, Ku-, AND Ka-BAND,
Improved Satellite Altimeter data dedicated to coastal areas :
Recent Results from the Corsica Calibration Site P. Bonnefond (1), P. Exertier (1), O. Laurain (1), Y. Ménard (2), F. Boldo (3), E. Jeansou (4), G. Jan.
1 Satellite geodesy (ge-2112) Applications E. Schrama.
Estimation of wave spectra with SWIM on CFOSAT – illustration on a real case C. Tison (1), C. Manent (2), T. Amiot (1), V. Enjolras (3), D. Hauser (2),
CNSA,, Date Nov Coordination Group for Meteorological Satellites - CGMS The Status of current and future CNSA Earth Observing System Presented.
Water HM meeting E. Obligis (CLS) and L. Eymard (LOCEAN) The wet tropospheric correction issue for the WATER HM mission.
JASON2 Status in NOAA Gary Petti Office of Satellite Data Processing and Distribution.
1 July 20, 2000 Geosat Follow-On An examination from an operational point of view Impact on operational products Overall system performance (from sensor.
SCM x330 Ocean Discovery through Technology Area F GE.
WP120 External Calibration of Spaceborne Microwave Remote Sensing System Sensors Objective:Evaluation of external calibration needs for a variety of microwave.
Satellite Altimetry. The range R from satellite to mean sea level is estimated by.
C. Shum, C. Zhao, Y. Yi, and P. Luk The Ohio State University GFO Calibration/Validation Meeting NOAA Laboratory for Satellite Altimetry Silver Spring,
Altimeter and scatterometer seminar SMHI, March 2012 Future of satellite altimeters Sentinel-3 and SWOT Julia Figa Saldaña With contributions from Sentinel-3.
(2) Norut, Tromsø, Norway Improved measurement of sea surface velocity from synthetic aperture radar Morten Wergeland Hansen.
Alternating Polarization ´Single´ Look Complex Product Status
Satellite Communications
Presentation transcript:

A review of the transponder calibration activities in the frame of the GAVDOS project Hausleitner, W.(1), J. Weingrill(1), F. Moser (1), J.-D. Desjonqueres (2), N. Picot (2), S.P. Mertikas (3)   (1) Austrian Academy of Sciences, Graz, Austria (2) Centre National d’Etudes Spatiales (CNES), Toulouse, France (3) Technical University of Crete, Chania, Greece

The GAVDOS Project GAVDOS – Establishment of a European radar altimeter calibration and sea-level monitoring site for Jason, Envisat and EURO-GLOSS Objectives Establish an absolute sea-level monitoring and altimeter calibration permanent facility on the isle of Gavdos Conduct tide-gauge measurements as well as direct altimeter transponder, Global Positioning System (GPS), Doppler Orbitography by Radio-positioning Integrated on Satellite (DORIS) and Satellite Laser Ranging (SLR) measurements for altimeter calibration Deliverables Jason absolute altimeter bias, Marine geoid, Sea level variations, local deformations / land displacements, etc. IWF/ÖAW GRAZ

Gavdos Calibration Work Calibration of satellite radar altimeters a Gavdos Cal/Val facility using three different methodologies (S.P. Mertikas, et.al. 2010) Comparing sea level anomalies between the satellite and the in-situ observations BIAS = SSH_altim – SSH_tide_gauge ≈18±5 cm Relate measurements to the Mean Sea Level of CLS01_MSS BIAS = SSH_altim – MSS_CLS01 – SLA_tide_gauge Usage of a microwave transponder placed at the satellites ground-track BIAS = ALT_altim – range_altim – H_TRP IWF/ÖAW GRAZ

Microwave Altimeter Transponder The principle of a microwave altimeter transponder is to receive, amplify and retransmit a satellite radar altimeter pulse. The emitted pulse is received by the altimeter on-board the satellite again with the 2-way travel-time of the pulse giving the range between the satellite and the transponder Technical specifications Minimal distortion of the signal High frequency stability Frequency: 13.7 GHz Bandwidth: 600 MHz High amplification rate Total gain: 77 dB Stable instrument delay Response delay: 13.24 ns IWF/ÖAW GRAZ

TRP Location Deployment on Gavdos at DIAS Cross-over of Jason 3 km apart of Envisat ITRF2005 coordinates GPS campaign by S. Mertikas (Nov. 2010) Φ = 34°49‘17.2953“ λ = 24°05‘27.6631“ h = 251.5627 m IWF/ÖAW GRAZ

TRP Site Setup Housing Aluminium frame enveloped with fabric Cover plate from acrylic glass Protection from wind, dust contamination, animals, etc. Electrical Power Supply 12 V car batteries recharched by solar panels (2x50 W) Modem Telecommanding Watchdog timer (daily at 0.0h) GSM/GPRS-modem for remote controlled TRP switch-on IWF/ÖAW GRAZ

Ocean vs. Point Target Response IWF/ÖAW GRAZ IWF/ÖAW GRAZ

The Transponder Principle cont‘d OSTM Level-2 S-IGDR Data Files 1 Hz / 20 Hz data Ku / C-band waveforms Latency: 2 days Provided by CNES (Envisat Picture) IWF/ÖAW GRAZ IWF/ÖAW GRAZ

ENVISAT Calibration Two years ENVISAT calibration campaign TRP approx. 3km outside of footprint center RA-2 set to Preset Loop Output (PLO) mode RA2/MWR products analyzed RA2_science_level-1b RA2_average_waveforms RA-2 instrument bias: 39.0±3.3cm (Cristea at.al., TGRS-20067-0032) IWF/ÖAW GRAZ

Jason Calibration Poseidon-2/3 instrument characteristics Dual-band (C/Ku) pulse compression radar 128 waveform samples Frequency / PRF / t-res. = 13.575 GHz / 2060 Hz / 3.125 ns Operation modes Acquisition mode: Detects ocean returns and init. Tracking loops Tracking mode: Nominal mode for the altimeter Problem: The TRP signature is not visible in the waveform data Because: ▶ J-Tracking is more sensitive to coast/land transitions generating loss of tracking resulting to a 1.5 sec data gap (desc. passes) ▶ Gavdos is small enough to keep tracking the sea shifting the TRP outside of the altimeter ranging window (asc. passes) Calibration 2: Measures the transfer function of the internal receiver channel IWF/ÖAW GRAZ

Cal-2 Calibration Data Calibration-2 Mode 32 Individual Calibrations 128 bins 0.153 s Calibration-2 Mode NO absolute epoch time available! Dating of individual calibrations is known with 1s accuracy only 3.125 ns IWF/ÖAW GRAZ

Calibration Processing Concept IWF/ÖAW GRAZ

Cal-2 Calibration Configuration 5 sec calibration waveforms ±1s ±1s 11 sec data gap IWF/ÖAW GRAZ

Data Screening Pass 050 Cycle 018 IWF/ÖAW GRAZ

Data Interpolation Densification to 20 Hz rate (cubic spline interpolation) Precise computation of point of closest approach (φ,λ) Crete 11s Gavdos φ λ IWF/ÖAW GRAZ

Individual Calibration Analysis Definition/Estimation of maximum power reflection by 1)Maximum value of received energy 2)Max. val. of Gaussian fit to return power 3)Half ma. power at leading edge of Gaussian fit 4)Centroid of received energy IWF/ÖAW GRAZ

Individual Calibration Fitting IWF/ÖAW GRAZ

Optimal Parabola Fit 32 Individual Calibrations 128 bins IWF/ÖAW GRAZ

Power Vertex Adjustment Alignment of PCA of orbit vertex of fitted parabola Absolute time of PCA from orbit Absolute dating of bin #1 of individ. cal. #1 Altimeter range command Set for each calibration Provided by CNES on a pass-per-pass basis Ranging ambiguity IWF/ÖAW GRAZ

Geophysical Parameters Range Wet Troposph. Source Uncorr. effect Cycle 50 Corr. Wet Troposph 0-30 cm 15 cm Dry troposphere 230 cm 229.5 cm Iono troposphere 0.2-20 cm 1.6 cm Sea state bias 0-20 cm 8.8 cm Dry Troposph. Ionosph. Sea State Bias DOY IWF/ÖAW GRAZ

Range Correction   -2.49 m [m] [m] DOY IWF/ÖAW GRAZ

Sea Surface Height IWF/ÖAW GRAZ

Geophysical Correcitons IWF/ÖAW GRAZ

Cal-2 Ranging Budget / Residual Corrections Effect Magnitude (m) Calibration bin range Ambiguity Altimeter delay CoM Correction 33738.088 1310718.858 -5.173 0.471 r Dry troposphere Wet (water vapour) Ionosphere -2.297 -0.116 -0.016 TRP delay (electronic) TRP delay (geometric) Station marker eccentricity Slant range correction - 3.972 -1.477 -0.824 TRP ell.height Solid earth tides 251.169 -0.060 1344398.967 44.575 Geoid Ellipsoid Orbital height Residual IWF/ÖAW GRAZ

Outlook Analysis of full set of Cal-2 passes Limited number of passes available Usage of precise orbits Provided with a 60 days latency DIODE DEM coupling mode Usage of onboard digital elevation model for pre-defining the altimeter tracking window Transponder calibration with nominal tracking rate (51 ms) Pass Cal Status Data Date Cycle OK / fail S-IGDR SIMPACAL Cal. range Aux. Data 09 09 12 44 OK   YES 09 09 22 45 fail 09 10 01 46 09 10 11 47 09 10 21 48 no CAL 09 10 31 49 09 11 10 50 09 11 20 51 09 11 30 52 09 12 10 53 09 12 20 54 09 12 30 55 09 01 09 56 09 01 19 57 Pass Cal Status Data Date Cycle OK / fail S-IGDR SIMPACAL Calibration Aux. Data 10 01 28 58 fail YES   10 02 08 59 no CAL 10 02 17 60 10 02 27 61 10 03 09 62 OK 10 03 19 63 10 03 29 64 10 04 08 65 10 04 18 66 10 04 28 67 10 05 08 68 10 05 17 69 10 05 27 70 10 06 06 71 10 06 16 72 IWF/ÖAW GRAZ

Figure Pool IWF/ÖAW GRAZ

Geophysical Corrections Mean sea surface Solid Earth tide Geocentr. Ocean tide Pole tide height Inv. barom. height eff. HF fluctuations of SST IWF/ÖAW GRAZ

Orbit Slant Distance Range_ku TRP Altitude Sea Surface SSH Ellipsoid IWF/ÖAW GRAZ

Date 2009/11/10 Time 14:19:34 Date Exec. CAL2 Only known to integer seconds ? Ho 4604232 LSB Ho .0073191 m NSPEC 3 NCAL 32