Ch 4.6 Related Rates Graphical, Numerical, Algebraic by Finney Demana, Waits, Kennedy.

Slides:



Advertisements
Similar presentations
4.6 Related Rates Any equation involving two or more variables that are differentiable functions of time t can be used to find an equation that relates.
Advertisements

1 Related Rates Section Related Rates (Preliminary Notes) If y depends on time t, then its derivative, dy/dt, is called a time rate of change.
RELATED RATES PROBLEMS
4.6 Related Rates What you’ll learn about Related Rate Equations Solution Strategy Simulating Related Motion Essential Questions.
Section 2.6 Related Rates.
3.11 Related Rates Mon Dec 1 Do Now Differentiate implicitly in terms of t 1) 2)
Section 2.6: Related Rates
4.6: Related Rates. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
1. Read the problem, pull out essential information and identify a formula to be used. 2. Sketch a diagram if possible. 3. Write down any known rate of.
Section 2.8 Related Rates Math 1231: Single-Variable Calculus.
Teresita S. Arlante Naga City Science High School.
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
Sec 2.6 Related Rates In related rates problems, one tries to find the rate at which some quantity is changing by relating it to other quantities whose.
Pumping out a Tank How rapidly will the fluid level inside a vertical cylindrical tank drop if we pump the fluid out at the rate of 3000 L/min?
When gear A makes x turns, gear B makes u turns and gear C makes y turns., 3.6 Chain rule y turns ½ as fast as u u turns 3 times as fast as x So y turns.
3.11 Related Rates Mon Nov 10 Do Now
2.6 Related Rates. Related Rate Problems General Steps for solving a Related Rate problem Set up: Draw picture/ Label now – what values do we know.
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
Section 2.6 Related Rates Read Guidelines For Solving Related Rates Problems on p. 150.
RELATED RATES Mrs. Erickson Related Rates You will be given an equation relating 2 or more variables. These variables will change with respect to time,
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
Aim: How do we find related rates when we have more than two variables? Do Now: Find the points on the curve x2 + y2 = 2x +2y where.
4.6 Related rates.
Section 4.1: Related Rates Practice HW from Stewart Textbook (not to hand in) p. 267 # 1-19 odd, 23, 25, 29.
Related Rates Section 4.6a.
Lesson 3-10a Related Rates. Objectives Use knowledge of derivatives to solve related rate problems.
Warmup 1) 2). 4.6: Related Rates They are related (Xmas 2013)
APPLICATION OF DIFFERENTIATION AND INTEGRATION
Problem of the Day The graph of the function f is shown in the figure above. Which of the following statements about f is true? b) lim f(x) = 2 x a c)
Related Rates 5.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
Warm-Up If x 2 + y 2 = 25, what is the value of d 2 y at the point (4,3)? dx 2 a) -25/27 c) 7/27 e) 25/27 b) -7/27 d) 3/4.
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
6.5: Related Rates Objective: To use implicit differentiation to relate the rates in which 2 things are changing, both with respect to time.
Miss Battaglia AP Calculus Related rate problems involve finding the ________ at which some variable changes. rate.
Related Rates SOL APC.8c Luke Robbins, Sara Lasker, Michelle Bousquet.
Related Rates Section 4.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does.
4.1 - Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm 3 /s. How fast is the radius of the.
AP CALCULUS AB Chapter 4: Applications of Derivatives Section 4.6: Related Rates.
Warm Up Page 251 Quick Review 1-6 Reference page for Surface Area & Volume formulas.
3.11 Related Rates Tues Nov 10 Do Now Differentiate implicitly in terms of t 1) 2)
Bonaventura Francesco Cavalieri 1598 – 1647 Bonaventura Francesco Cavalieri 1598 – 1647 Bonaventura Cavalieri was an Italian mathematician who developed.
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
DO NOW Approximate 3 √26 by using an appropriate linearization. Show the computation that leads to your conclusion. The radius of a circle increased from.
Drill: find the derivative of the following 2xy + y 2 = x + y 2xy’ +2y + 2yy’ = 1 + y’ 2xy’ + 2yy’ – y’ = 1 – 2y y’(2x + 2y – 1) = 1 – 2y y’ = (1-2y)/(2x.
Implicit Differentiation & Related Rates Review. Given: y = xtany, determine dy/dx.
4.6 RELATED RATES. STRATEGIES FOR SOLVING RELATED RATES PROBLEMS 1.READ AND UNDERSTAND THE PROBLEM. 2.DRAW AND LABEL A PICTURE. DISTINGUISH BETWEEN CONSTANT.
Section 4.6 Related Rates. Consider the following problem: –A spherical balloon of radius r centimeters has a volume given by Find dV/dr when r = 1 and.
Mr. Moore is pushing the bottom end of a meter stick horizontally away from the wall at 0.25m/sec. How fast is the upper end of the stick falling down.
Related Rates 3.6.
Examples of Questions thus far…. Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
Unit 3: Applications of the Derivative
Related Rates Problems. A hot-air balloon rising straight up from a level field is tracked down by a television camera located 500 ft away from the lift-off.
Related Rates. We have already seen how the Chain Rule can be used to differentiate a function implicitly. Another important use of the Chain Rule is.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Warm up 1. Calculate the area of a circle with diameter 24 ft. 2. If a right triangle has sides 6 and 9, how long is the hypotenuse? 3. Take the derivative.
4.6 Related Rates.
Table of Contents 19. Section 3.11 Related Rates.
Calculus I (MAT 145) Dr. Day Monday Oct 23, 2017
Related Rates AP Calculus AB.
Related Rates.
Chapter 3, Section 8 Related Rates Rita Korsunsky.
Section 2.6 Calculus AP/Dual, Revised ©2017
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Related Rates Chapter 5.5.
Section 3.5 – Related Rates
AP Calculus AB 5.6 Related Rates.
Calculus I (MAT 145) Dr. Day Monday February 25, 2019
Calculus I (MAT 145) Dr. Day Monday March 4, 2019
AGENDA: 1. Copy Notes on Related Rates and work all examples
Presentation transcript:

Ch 4.6 Related Rates Graphical, Numerical, Algebraic by Finney Demana, Waits, Kennedy

Differentiation With Respect to Different Variables The volume of a cone can be expressed as: a) Find dV/dt if V, r, and h are all functions of time. b) Find dV/dt if r is constant so that V and h are functions of time. c) Find dV/dt if V is constant so that only r and h are functions of time.

Differentiation With Respect to Different Variables The volume of a cone can be expressed as: a) Find dV/dt if V, r, and h are all functions of time. b) Find dV/dt if r is constant so that V and h are functions of time. c) Find dV/dt if V is constant so that r and h are functions of time.

Related Rate Example A hot-air balloon rising straight up from a level field is tracked by a range finder 500 feet from the lift-off point. At the moment the range finder’s elevation angle is π/4, the angle is increasing at the rate of .14 radians/min. How fast is the balloon rising at that moment?

Related Rate Example A hot-air balloon rising straight up from a level field is tracked by a range finder 500 feet from the lift-off point. At the moment the range finder’s elevation angle is π/4, the angle is increasing at the rate of .14 radians/min. How fast is the balloon rising at that moment? h 500 ft R.F.

Steps to Solving a Related Rate Problem Identify the variable whose rate of change we want and the variables whose rate of change we have. Draw a picture and label with values and variables. Write an equation relating the variable wanted with known variables. Differentiate implicitly with respect to time. Substitute known values Interpret the solution and reread the problem to make sure you’ve answered all the questions.

.6 .8 z y x

Related Rate Example Water runs into a conical tank at the rate of 9 ft3/min. The tank stands point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level rising when the water is 6 ft deep?

Related Rate Example Water runs into a conical tank at the rate of 9 ft3/min. The tank stands point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level rising when the water is 6 ft deep? h 10 ft r 5 ft

Related Rate Example A 13 ft ladder is leaning against a wall. Suppose that the base of the ladder slides away from the wall at the constant rate of 3 ft/sec. Show how the motion of the two ends of the ladder can be represented by parametric equations. What values of t make sense in this problem. Graph using a graphing calculator in simultaneous mode. State an appropriate viewing window. (Hint: hide the coordinate axis). Use analytic methods to find the rates at which the top of the ladder is moving down the wall at t = .5, 1, 1.5 and 2 sec. How fast is the top of the ladder moving as it hits the ground?

Related Rate Example A 13 ft ladder is leaning against a wall. Suppose that the base of the ladder slides away from the wall at the constant rate of 3 ft/sec. Show how the motion of the two ends of the ladder can be represented by parametric equations. What values of t make sense in this problem. { 0 < t < 13/3 }

Related Rate Example Graph using a graphing calculator in simultaneous mode. State an appropriate viewing window. (Hint: hide the coordinate axis). t: [0,4] x: [0,13] y: [0, 13] 4. Use analytic methods to find the rates at which the top of the ladder is moving down the wall at t = .5, 1, 1.5 and 2 sec. How fast is the top of the ladder moving as it hits the ground?