5.Kinematics of Particles

Slides:



Advertisements
Similar presentations
Kinematics of Rigid Bodies
Advertisements

Kinematics of Particles
King Fahd University of Petroleum & Minerals Mechanical Engineering Dynamics ME 201 BY Dr. Meyassar N. Al-Haddad Lecture # 9.
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
Chapter 16 Planar Kinematics of a Rigid Body
KINETICS of PARTICLES Newton’s 2nd Law & The Equation of Motion
King Fahd University of Petroleum & Minerals Mechanical Engineering Dynamics ME 201 BY Dr. Meyassar N. Al-Haddad Lecture # 3.
KINETICS of PARTICLES Newton’s 2nd Law & The Equation of Motion
Chapter 8: Rotational Kinematics Lecture Notes
King Fahd University of Petroleum & Minerals Mechanical Engineering Dynamics ME 201 BY Dr. Meyassar N. Al-Haddad Lecture # 6.
Lecture III Curvilinear Motion.
Mechanics of rigid body StaticsDynamics Equilibrium Galilei Newton Lagrange Euler KinematicsKinetics v=ds/dt a=dv/dt Σ F = 0 Σ F = m a mechanics of rigid.
Lecture III Curvilinear Motion.
Angular Kinematics Objectives Distinguish angular motion from rectilinear and curvilinear motion Explain how segment and joint angles are measured Discuss.
Kinematics - Plane motion Jacob Y. Kazakia © Types of Motion Translation ( a straight line keeps its direction) 1.rectilinear translation 2.curvilinear.
I: Intro to Kinematics: Motion in One Dimension AP Physics C Mrs. Coyle.
College of Physics Science & Technology YANGZHOU UNIVERSITYCHINA Chapter 11ROTATION 11.1 The Motion of Rigid Bodies Rigid bodies A rigid body is.
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
Theory of Machines Lecture 4 Position Analysis.
Scalar (Dot) Product. Scalar Product by Components.
Objective Rectangular Components Normal and Tangential Components
© Fox, McDonald & Pritchard Introduction to Fluid Mechanics Chapter 5 Introduction to Differential Analysis of Fluid Motion.
Copyright Kaplan AEC Education, 2005 Dynamics Outline Overview DYNAMICS, p. 193 KINEMATICS OF A PARTICLE, p. 194 Relating Distance, Velocity and the Tangential.
MAE 242 Dynamics – Section I Dr. Kostas Sierros.
ENGR 214 Chapter 15 Kinematics of Rigid Bodies
1 Chapter 6: Motion in a Plane. 2 Position and Velocity in 2-D Displacement Velocity Average velocity Instantaneous velocity Instantaneous acceleration.
Kinematics of Particles
Edexcel AS Physics Unit 1 : Chapter 3: Rectilinear Motion Prepared By: Shakil Raiman.
Projectiles Horizontal Projection Horizontally: Vertically: Vertical acceleration g  9.8 To investigate the motion of a projectile, its horizontal and.
Chapter 2 – kinematics of particles
Rotational Motion 2 Coming around again to a theater near you.
Rotational Kinematics Chapter 8. Expectations After Chapter 8, students will:  understand and apply the rotational versions of the kinematic equations.
Chapter 8 Rotational Kinematics. Radians Angular Displacement  Angle through which something is rotated  Counterclockwise => positive(+) Units => radians.
4.1 The Position, Velocity, and Acceleration Vectors 4.1 Displacement vector 4.2 Average velocity 4.3 Instantaneous velocity 4.4 Average acceleration 4.5.
Jump to first page 1 Chapter 3 Kinematics of particles Differentiation: the ratio between two increments when they are extremely small, e.g. velocity.
DESCRIBING MOTION: Kinematics in One Dimension CHAPTER 2.
MOTION RELATIVE TO ROTATING AXES
المحاضرة الخامسة. 4.1 The Position, Velocity, and Acceleration Vectors The position of a particle by its position vector r, drawn from the origin of some.
Chapter 10 Rotational Motion.
Kinematics of Particles Lecture II. Subjects Covered in Kinematics of Particles Rectilinear motion Curvilinear motion Rectangular coords n-t coords Polar.
MAE 242 Dynamics – Section I Dr. Kostas Sierros. Problem 1.
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
Edexcel A2 Physics Unit 4 : Chapter 1.2 : Motion In a Circle Prepared By: Shakil Raiman.
2.1 Position, Velocity, and Speed 2.1 Displacement  x  x f - x i 2.2 Average velocity 2.3 Average speed  
DYNAMICS CONTENTS.
CHAPTER 11 Kinematics of Particles INTRODUCTION TO DYNAMICS Galileo and Newton (Galileo’s experiments led to Newton’s laws) Galileo and Newton (Galileo’s.
Motion in Two Dimensions AP Physics C Mrs. Coyle.
Physics Formulas. The Components of a Vector Can resolve vector into perpendicular components using a two-dimensional coordinate system:
Lecture III Curvilinear Motion.
Curvilinear Motion  Motion of projectile  Normal and tangential components.
KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES.
Physics Chapter 2 Notes. Chapter Mechanics  Study of the motion of objects Kinematics  Description of how objects move Dynamics  Force and why.
Dynamics FE Review Session Adapted from the following references:
Chapter 2: Kinematics (1D)
Chapter 2 Describing Motion: Kinematics In One Dimension
Vector-Valued Functions and Motion in Space
Kinematics in Two Dimensions
Chapter Motion in Two and Three Dimensions
الفصل 1: الحركة الدورانية Rotational Motion
ดร. พิภัทร พฤกษาโรจนกุล
King Fahd University of Petroleum & Minerals
Conceptual Dynamics Part II: Kinematics of Particles Chapter 3
MEE 214 (Dynamics) Tuesday
Rotation Kinematics.
Department of Physics and Astronomy
Rotational Kinematics
Conceptual Dynamics Part II: Kinematics Chapter 2
Kinematics in Two Dimensions
Presentation transcript:

5.Kinematics of Particles ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong Chapter Outline 6-1 Rectilinear Motion 6-2 Angular Motion 6-3 Plane Curvilinear Motion 6-4 Plane Relative Motion ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-1 Rectilinear Motion A study of linear motion of particle - distance - velocity - acceleration -x +x x Dx ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-1 Rectilinear Motion Average velocity between P- P’ Instantaneous velocity ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-1 Rectilinear Motion Average acceleration between P- P’ Instantaneous acceleration v = velocity >> m/s x = distance of motion >> m a = acceleration >> m/s2 t = time of motion >> sec ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-1 Rectilinear Motion Direction of velocity and acceleration ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-1 Rectilinear Motion Relationship between distance, velocity and acceleration ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-1 Rectilinear Motion The differential equation in each case 1) Constant velocity ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-1 Rectilinear Motion The differential equation in each case 2) Constant acceleration from ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-1 Rectilinear Motion The differential equation in each case For x0=0 ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-1 Rectilinear Motion The differential equation in each case 3) For vertical motion (a=g=-9.81 m/s2) ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-2 Angular Motion rad Angular displacement rad/s Angular velocity rad/s2 Angular acceleration ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-2 Angular Motion Constant angular velocity ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-2 Angular Motion Constant angular acceleration ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-2 Angular Motion Constant angular acceleration ME-RMUTI Sarthit Toolthaisong

ME-RMUTI Sarthit Toolthaisong 6-2 Angular Motion Constant angular acceleration From relationship ME-RMUTI Sarthit Toolthaisong

6-3 Plane Curvilinear Motion Rectangular coordinate x-y ME-RMUTI Sarthit Toolthaisong

6-3 Plane Curvilinear Motion ME-RMUTI Sarthit Toolthaisong Projectile motion Acceleration     ME-RMUTI Sarthit Toolthaisong

6-3 Plane Curvilinear Motion ME-RMUTI Sarthit Toolthaisong Tangential and Normal component (n-t) velocity ME-RMUTI Sarthit Toolthaisong

6-3 Plane Curvilinear Motion ME-RMUTI Sarthit Toolthaisong Tangential and Normal component (n-t) Acceleration in normal and tangential Normal (an) Tangential (at) ME-RMUTI Sarthit Toolthaisong

6-3 Plane Curvilinear Motion ME-RMUTI Sarthit Toolthaisong Tangential and Normal component (n-t) Acceleration in normal and tangential For r = constant ME-RMUTI Sarthit Toolthaisong

6-3 Plane Curvilinear Motion ME-RMUTI Sarthit Toolthaisong Polar coordinate (r-q) acceleration Magnitude ME-RMUTI Sarthit Toolthaisong

6-3 Plane Curvilinear Motion ME-RMUTI Sarthit Toolthaisong Polar coordinate (r-q) velocity Magnitude ME-RMUTI Sarthit Toolthaisong

6-3 Plane Curvilinear Motion ME-RMUTI Sarthit Toolthaisong Polar coordinate (r-q) acceleration Magnitude ME-RMUTI Sarthit Toolthaisong

6-3 Plane Curvilinear Motion ME-RMUTI Sarthit Toolthaisong Polar coordinate (r-q) For r = constant ME-RMUTI Sarthit Toolthaisong

6-5 Plane Relative motion ME-RMUTI Sarthit Toolthaisong - Translating reference axes - Rotating reference axes ME-RMUTI Sarthit Toolthaisong

6-5 Polar Coordinates (r- q ) ME-RMUTI Sarthit Toolthaisong Translating reference axes B A X Y x y or ME-RMUTI Sarthit Toolthaisong

6-5 Polar Coordinates (r- q ) ME-RMUTI Sarthit Toolthaisong Rotating reference axes ME-RMUTI Sarthit Toolthaisong

6-6 Relative Motion (Translating Axis) ME-RMUTI Sarthit Toolthaisong