The PANDA Experiment at FAIR Marco Destefanis Università degli Studi di Torino Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013 for the PANDA Collaboration
Overview Physics PANDA Form Factors Drell-Yan process and background Hypernuclei PANDA spectrometer Summary
Primary beams: Proton Heavy Ions Factor over present in intensity Future GSI and Facility for Antiproton and Ion Research Secondary Beams: Radioactive beams Antiprotons GeV /s Storage and Cooler Rings: Radioactive beams e – A collider stored and cooled GeV antiprotons
High Energy Storage Ring HESR High res. mode: L = cm -2 s -1 p/p < High lum. mode: L = 2·10 32 cm -2 s -1 p/p < Cooling: electron/stochastic P max = 15 GeV/c L max = 2·10 32 cm -2 s -1 Ø < 100 m p/p < internal target Characteristics stored and cooled GeV/c antiprotons
Antiproton power pbar beams can be cooled -> excellent resonance resolution Preliminary expectation
The PANDA Physics Confinement Why are there no free quarks? Hadron mass Where is the mass of the proton coming from? Are there other color neutral objects? What is the structure of the nucleon? What are the spin degrees of freedom? J. Ritman, Status of PANDA, 8th International Workshop on Heavy Quarkonium 2011
Meson spectroscopy*: D mesons charmonium glueballs, hybrids, tetraquarks, molecules Charmed and multi-strange baryon spectroscopy* Electromagnetic processes (FF, pp → e + e -, pp → , Drell-Yan) Properties of single and double hypernuclei Properties of hadrons in nuclear matter The PANDA Physics * Presented by V. Mochalov
ppbar Cross Section
ppbar Cross Section–Exclusive Final States
The PANDA Potential All J PC allowed for qq are accessible in pp T. Johansson, PANDA at FAIR, Excited QCD 2012, Peniche (Portugal) Formation J PC not allowed for qq possible Production
Meson Spectroscopy
The New XYZ States
Discovery of Z c ± (3900)
The experimental data set available is far from being complete. All strange hyperons and single charmed hyperons are energetically accessible in pp collisions at PANDA. By comparing several reactions involving different quark flavours the OZI rule and its possible violation, can be tested In PANDA pp ΛΛ, ΛΞ, ΛΞ, ΞΞ, ΣΣ, ΩΩ, Λ c Λ c, Σ c Σ c, Ω c Ω c can be produced allowing the study of the dependences on spin observables. QCD Dynamics
E. Tomasi-Gustafsson, M.P. Rekalo, PLB 504 (2001) 291 Generator: |G M | = 22.5 (1 + q 2 / 0.71) -2 (1 + q 2 / 3.6) -1 = |G E |/|G M | lower higher q 2 M. Sudol et al., EPJ A44 (2010) 373 p+pbar -> e+e- events generation L = 2 cm s → 2 fb -1 in 100 days
R=|G E |/|G M | BaBAR PS170 PANDA sim L = 2 cm s → 2 fb -1 in 100 days M. Sudol et al., EPJ A44 (2010) 373 BABAR: B. Aubert et al. PRD 73 (2006) PS170: G. Bardin et al., NPB 411 (1994) 3 pQCD inspired: V. A. Matveev et al., LNC 7 (1973) 719 S. J. Brodsky et al., PRL 31 (1973) 1153 VDM: F. Iachello, PLB 43 (1973) 191 Extended VDM: E.L.Lomon, PRC 66 (2002) Individual determination of |G E | and |G M | up to q 2 14 (GeV/c) 2 !! PANDA Scenario: Expected Results
M. Sudol et al., EPJ A44 (2010) 373 L = 2 cm s → 2 fb -1 in 100 days Absolute accessible up to q 2 28 (GeV/c) 2 BABAR: B. Aubert et al. PRD 73 (2006) E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al., PRL 95 (2005) DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 PANDA Scenario: Expected Results
E. Tomasi-Gustafsson, 12th International Conference on Nuclear Reaction Mechanisms, Villa Monastero, Varenna, Italy, Jun 2009, pp.447, arXiv: v1 [nucl-th] L = 2 cm s → 2 fb -1 in 100 days BABAR: B. Aubert et al. PRD 73 (2006) E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al., PRL 95 (2005) DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 Probing the Phragmèn-Lindel ö f theorem: PANDA Scenario: Asymptotic Behaviours
TMD: K T -dependent Parton Distributions Twist-2 PDFs Distribution functions Chirality even odd Twist-2 ULTULT,h1,h1, Transversity Boer-Mulders Sivers
TMD PDF Investigation ➠ Process SIDIS → convolution with FF Drell-Yan → PDF only pp annihilations: each valence quark can contribute to the diagram ➠ FAIR unique energy range up to s~30 GeV 2 with PANDA up to s~200 GeV 2 with much higher energies → big contribution from sea-quarks
Drell-Yan Process Drell-Yan: pp -> + - X Collins-Soper frame Kinematics x 1,2 = mom fraction of parton 1,2 = x 1 x 2 = M 2 /s x F = x 1 - x 2 Collins-Soper frame: Phys. Rev. D16 (1977) 2219.
SINGLE-POLARISED UNPOLARISED. Drell-Yan Cross Section R.D. Tangerman and P.J. Mulders, Phys. Rev. D51, (1995) U = N(cos2φ>0) D = N(cos2φ<0) Asymmetry
CERN NA GeV/c Fermilab E GeV/c Di-Lepton Production pp -> l + l - X A. Baldit et al., Phys. Lett. 332-B, 244 (1994) R.S. Towell et al., Phys. Rev. D 64, (2001)
Phase space for Drell-Yan processes x 1,2 = mom fraction of parton 1,2 = x 1 x 2 x F = x 1 - x 2 = const: hyperbolae x F = const: diagonal HESR symmetric HESR collider GeV/c 2 ≤ M ≤ 2.5 GeV/c 2 PANDA
Drell-Yan Process and Background Background studies: needed rejection factor of 10 7 Drell-Yan: pp -> + - X cross section 1 s = 30 GeV 2 Background: pp -> + - X, 2 + 2 - X,…… cross section b m = 105 MeV/c 2 ; m 145 MeV/c 2 average primary pion pairs: 1.5
DY Vertex UNPOLARISEDSINGLE-POLARISED 500KEv included in asymmetries Acceptance corrections crucial! 1 < q T < 2 GeV/c 2 < q T < 3 GeV/c xPxP xPxP xPxP xPxP xPxP xPxP Physics Performance Report for PANDA arXiv:
R = L ·σ· ɛ = 2·10 32 cm -2 s -1 × x 0.8· cm 2 × 0.33 = 0.05 s -1 ~ 130 Kev/month Statistical errors for 500KEv generated xPxP ) ) xPxP xPxP Physics Performance Report for PANDA arXiv: DY Vertex
3 different systems contain double strangeness (S = -2) Doubly strange hypernucleus: Double hypernucleus: Exotic hyperatom : p p n n p p n n p e-e- n p n Interactions: - -nucleus: interplay between the Coulomb and nuclear potential Interactions: - N Interactions: From - hypernucleus to hypernucleus: after N STORI’11 - F. Iazzi Politecnico di Torino&INFN From hyperatom to - hypernucleus: absorption Double Strange Systems
in the region close to the nucleus: Atomic orbitals overlap nucleus: Coulomb and Nuclear interaction shift the levels and broad them shift and width can be measured (only last level ) p e-e- n p n - : M = [GeV/c 2 ]; = [s]; S = -2 Stopped X - are captured into atomic (high) levels X - undergoes an hyperatomic cascade X-rays are emitted in the range 0÷1.2 MeV ( 12 C) Absorption from an atomic level into nucleus ends the atomic cascade Bohr radius in lowest levels(n=2,3): ≈ 15 – 25 [fm] STORI’11 - F. Iazzi Politecnico di Torino&INFN X-ray spectroscopy (from - ) in the range: ≈ 0.1 – 1 [MeV] No existing data! Which Physics with Hyperatoms?
Physics (I): ΛΛ strong interaction (only possible in double hypernuclei) Quarks: s-s interaction YY potential: attractive/repulsive? In One Boson Exchange mechanism: ΛΛ ΛΛ : only non strange, I =0 meson exchange (w,h...) hyperfragments distribution: dependence on YY potential Physics (II): ΛΛ weak interaction (only possible in double hypernuclei) Non Mesonic Hyperon Induced Decay: ΛΛ Λ n : (expected Γ Λn << Γ free ) (p Λ/N = 433 MeV/c) ΛΛ Σ - p : (expected Γ Σp << Γ free ) (p Σ/N = 321 MeV/c) Measurements Strong interaction: DB ΛΛ ( A Z ΛΛ ) = B ΛΛ ( A Z ΛΛ ) - 2B Λ ( A-1 Z Λ ) (from g spectroscopy) Weak interaction: momentum of p from decay momentum of p from – p momentum of – from , decay p p n n STORI’11 - F. Iazzi Politecnico di Torino&INFN Several A data core of ΛΛ interaction Formed by X - p ΛΛ reaction inside nucleus Which Physics with ΛΛ Hypernuclei? B B.E. A
The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv:
The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv: Detector requirements: nearly 4 solid angle(partial wave analysis) high rate capability(2·10 7 annihilations/s) good PID( , e, , , K, p) momentum resolution(~1%) vertex info for D, K 0 S, (cτ =123 m for D 0, p/m ≈ 2) efficient trigger(e, , K, D, ) no hardware trigger(raw data rate ~ TB/s)
The Micro-Vertex Detector FAIRNESS2012, L. Zotti
The Micro-Vertex Detector FAIRNESS2012, L. Zotti
Tracking Detectors I. Lehmann, Spin-Praha 2012
Cherenkov Detectors I. Lehmann, Spin-Praha 2012
Electromagnetic Calorimeters I. Lehmann, Spin-Praha 2012
MDT layoutMDT cross section Muon Detector System Iarocci Tubes working in proportional mode Ar+CO 2 gas mixture Prototype ready FE electronics in production TDR for the PANDA Muon System, 2 nd Draft (May 2011) JINR - Dubna
Muon Detector Layout MDT’sWiresStrips Barrel End Cap Muon Filter Forward Range System Total Range System Prototype JINR - Dubna
DIRC MVD EMC Physics Performance Report for PANDA arXiv: STT PANDA PID Requirements: particle identification essential for PANDA momentum range 200 MeV/c – 10 GeV/c Extreme high rates 2·10 7 Hz good particle separation (K- e ) different detectors needed for PID Particle Identification
All the details of the P ANDA experimental program are reported in the “Physics Performance Report”. Within this document, we present the results of detailed simulations performed to evaluate detector performance on many benchmark channels. arXiv: v1 PANDA Phyisics Performance Report
Summary PANDA physics program unique program accessible with antiproton beams addresses key questions high discovery potential high statistics and high precision results Beginning in 2018