The PANDA Experiment at FAIR Marco Destefanis Università degli Studi di Torino Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013.

Slides:



Advertisements
Similar presentations
The Central Straw Tube Tracker In The PANDA Experiment
Advertisements

Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Application of Straw Tube Detectors to Hyperon Studies Sedigheh Jowzaee Symposium on Applied Nuclear Physics and Innovative Technologies Sep. 2014,
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
29 June 2004Steve Armstrong - Searches for Pentaquark Production at LEP1 Searches for Pentaquark Production at LEP Steve Armstrong (ALEPH Collaboration)
P.Lenisa Polarized Antiprotons Experiments 1 dr. Paolo Lenisa Università di Ferrara and INFN - ITALY Project X Workshop FNAL, 01/26/08 Polarized Antiprotons.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
New Opportunities for Hadron Physics with the Planned PANDA Detector
Charmonium Spectroscopy at  PANDA Diego Bettoni INFN, Ferrara, Italy for the  PANDA Collaboration Mainz, Germany, 19 November 2009.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
Simulations of Single-Spin Asymmetries from EIC Xin Qian Kellogg, Caltech EIC Meeting at CUA, July 29-31, TMD in SIDIS 2.Simulation of SIDIS.
Working Group 5 Summary David Christian Fermilab.
Drell-Yan Perspectives at FAIR Marco Destefanis Università degli Studi di Torino Drell-Yan Scattering and the Structure of Hadrons Trento (Italy) May 21-25,
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
J. RitmanForschungszentrum Juelich The PANDA Experiment: Exploring the Emergence of Structure in Matter.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
Meson spectroscopy with photo- and electro-production Curtis A. Meyer Carnegie Mellon University.
J. RitmanForschungszentrum Juelich The PANDA Experiment: A Facility to Map out Exotic Charmed Hadrons.
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Double hypernuclei at PANDA M. Agnello, F. Ferro and F. Iazzi Dipartimento di Fisica Politecnico di Torino SUMMARY  The physics of double-hypernuclei;
J. RitmanForschungszentrum Juelich The PANDA Experiment: Exploring the Emergence of Structure in Matter.
H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
1 Plans for JINR participation at FAIR JINR Contributions: ● Accelerator Complex ● Condensed Baryonic Matter ● Antiproton Physics ● Spin Physics Physics.
Status Report of HERMES Pasquale Di Nezza (on behalf of HERMES Collaboration) First measurement of transversity Exotic baryons: the pentaquark The spectrometer.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
 pd  n, ωn, K +  -, K 0  reactions at PANDA facility Yu. Rogov, First seminar of FRRC Fellows FAIR – Russia Research Center, Moscow June, ,
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
A.N.Sissakian, A.S.Sorin Very High Multiplicity Physics Seventh International Workshop JINR, Dubna, September 18, 2007 Status of the project NICA/MPD at.
MENU2004, Bejing, August 29- September 5, 2004 Raimondo Bertini Dipartimento di Fisica ``A. Avogadro'' and INFN - Torino, Italy Λ POLARISATION TO PROBE.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
Electromagnetic form factors of the proton in the time-like region with the PANDA detector GDR/LQCD Autrans, 6-7 Juin 2005 Saro Ong IPN Orsay and UPJV.
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Günther Rosner EINN05, Milos, 24/9/05 1 Prospects for Hadron Physics in Europe Experimental frontiers:  High precision  High luminosity  Polarisation.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
Physics to be explored by the un-polarized Drell-Yan program in COMPASS experiment Wen-Chen Chang Institute of Physics, Academia Sinica, Taiwan on behalf.
V. Mochalov (IHEP, Protvino) on behalf of the PANDA collaboration PANDA PHYSICS WITH THE USE OF ANTIPROTON BEAM.
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
TMD flavor decomposition at CLAS12 Patrizia Rossi - Laboratori Nazionali di Frascati, INFN  Introduction  Spin-orbit correlations in kaon production.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Günther Rosner FAIR UK DL, 25/01/06 1 antiProton Annihilation at DArmstadt Physics programme  Quark confinement: Charmonium spectroscopy 
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Exotic and non-Exotic Charmonium Spectroscopy with FAIR Klaus Peters on behalf of the PANDA Collaboration GSI and U Frankfurt TU Munich, Oct 11,
Marco Maggiora Dipartimento di Fisica and INFN - Torino, Italy Workshop on Tau-Charm at High Luminosity La Biodola, Isola d’Elba, May 27 – 31, 2013 PANDA.
Drell-Yan Studies in ppbar Reactions at FAIR Marco Destefanis Università degli Studi di Torino 43 rd PANDA Collaboration Meeting GSI, Darmstadt (Germany)
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
Review and Perspective of Muon Studies Marco Destefanis Università degli Studi di Torino PANDA Collaboration Meeting GSI (Germany) September 5-9, 2011.
PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert.
The Fermilab E760/E835 experiments (JETFNAL)
8th International Conference on Nuclear Physics at Storage Rings
pp Annihilation _ Gluon- Rich Environment Direct resonant formation of states with all non-exotic quantum numbers. ⟹ excellent precision in mass.
Recent results on light hadron spectroscopy at BES
Plans for nucleon structure studies at PANDA
N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)
Transverse Spin Physics at RHIC II
Spin Studies via Drell-Yan Process at PANDA
Presentation transcript:

The PANDA Experiment at FAIR Marco Destefanis Università degli Studi di Torino Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013 for the PANDA Collaboration

Overview Physics PANDA Form Factors Drell-Yan process and background Hypernuclei PANDA spectrometer Summary

Primary beams: Proton Heavy Ions Factor over present in intensity Future GSI and Facility for Antiproton and Ion Research Secondary Beams: Radioactive beams Antiprotons GeV /s Storage and Cooler Rings: Radioactive beams e – A collider stored and cooled GeV antiprotons

High Energy Storage Ring HESR High res. mode: L = cm -2 s -1  p/p < High lum. mode: L = 2·10 32 cm -2 s -1  p/p < Cooling: electron/stochastic P max = 15 GeV/c L max = 2·10 32 cm -2 s -1 Ø < 100  m  p/p < internal target Characteristics stored and cooled GeV/c antiprotons

Antiproton power pbar beams can be cooled -> excellent resonance resolution Preliminary expectation

The PANDA Physics Confinement Why are there no free quarks? Hadron mass Where is the mass of the proton coming from? Are there other color neutral objects? What is the structure of the nucleon? What are the spin degrees of freedom? J. Ritman, Status of PANDA, 8th International Workshop on Heavy Quarkonium 2011

Meson spectroscopy*: D mesons charmonium glueballs, hybrids, tetraquarks, molecules Charmed and multi-strange baryon spectroscopy* Electromagnetic processes (FF, pp → e + e -, pp → , Drell-Yan) Properties of single and double hypernuclei Properties of hadrons in nuclear matter The PANDA Physics * Presented by V. Mochalov

ppbar Cross Section

ppbar Cross Section–Exclusive Final States

The PANDA Potential All J PC allowed for qq are accessible in pp T. Johansson, PANDA at FAIR, Excited QCD 2012, Peniche (Portugal) Formation J PC not allowed for qq possible Production

Meson Spectroscopy

The New XYZ States

Discovery of Z c ± (3900)

The experimental data set available is far from being complete. All strange hyperons and single charmed hyperons are energetically accessible in pp collisions at PANDA. By comparing several reactions involving different quark flavours the OZI rule and its possible violation, can be tested In PANDA pp  ΛΛ, ΛΞ, ΛΞ, ΞΞ, ΣΣ, ΩΩ, Λ c Λ c, Σ c Σ c, Ω c Ω c can be produced allowing the study of the dependences on spin observables. QCD Dynamics

E. Tomasi-Gustafsson, M.P. Rekalo, PLB 504 (2001) 291 Generator: |G M | = 22.5 (1 + q 2 / 0.71) -2 (1 + q 2 / 3.6) -1  = |G E |/|G M | lower higher q 2 M. Sudol et al., EPJ A44 (2010) 373 p+pbar -> e+e- events generation L = 2  cm  s  → 2 fb -1 in  100 days

R=|G E |/|G M | BaBAR PS170 PANDA sim L = 2  cm  s  → 2 fb -1 in  100 days M. Sudol et al., EPJ A44 (2010) 373 BABAR: B. Aubert et al. PRD 73 (2006) PS170: G. Bardin et al., NPB 411 (1994) 3 pQCD inspired: V. A. Matveev et al., LNC 7 (1973) 719 S. J. Brodsky et al., PRL 31 (1973) 1153 VDM: F. Iachello, PLB 43 (1973) 191 Extended VDM: E.L.Lomon, PRC 66 (2002) Individual determination of |G E | and |G M | up to q 2  14 (GeV/c) 2 !! PANDA Scenario: Expected Results

M. Sudol et al., EPJ A44 (2010) 373 L = 2  cm  s  → 2 fb -1 in  100 days Absolute  accessible up to q 2  28 (GeV/c) 2 BABAR: B. Aubert et al. PRD 73 (2006) E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al., PRL 95 (2005) DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 PANDA Scenario: Expected Results

E. Tomasi-Gustafsson, 12th International Conference on Nuclear Reaction Mechanisms, Villa Monastero, Varenna, Italy, Jun 2009, pp.447, arXiv: v1 [nucl-th] L = 2  cm  s  → 2 fb -1 in  100 days BABAR: B. Aubert et al. PRD 73 (2006) E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al., PRL 95 (2005) DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 Probing the Phragmèn-Lindel ö f theorem: PANDA Scenario: Asymptotic Behaviours

TMD: K T -dependent Parton Distributions Twist-2 PDFs Distribution functions Chirality even odd Twist-2 ULTULT,h1,h1, Transversity Boer-Mulders Sivers

TMD PDF Investigation ➠ Process SIDIS → convolution with FF Drell-Yan → PDF only pp annihilations: each valence quark can contribute to the diagram ➠ FAIR unique energy range up to s~30 GeV 2 with PANDA up to s~200 GeV 2 with much higher energies → big contribution from sea-quarks

Drell-Yan Process Drell-Yan: pp ->  +  - X Collins-Soper frame Kinematics x 1,2 = mom fraction of parton 1,2  = x 1 x 2 = M 2 /s x F = x 1 - x 2 Collins-Soper frame: Phys. Rev. D16 (1977) 2219.

SINGLE-POLARISED UNPOLARISED. Drell-Yan Cross Section R.D. Tangerman and P.J. Mulders, Phys. Rev. D51, (1995) U = N(cos2φ>0) D = N(cos2φ<0) Asymmetry

CERN NA GeV/c Fermilab E GeV/c Di-Lepton Production pp -> l + l - X A. Baldit et al., Phys. Lett. 332-B, 244 (1994) R.S. Towell et al., Phys. Rev. D 64, (2001)

Phase space for Drell-Yan processes x 1,2 = mom fraction of parton 1,2  = x 1 x 2 x F = x 1 - x 2  = const: hyperbolae x F = const: diagonal HESR symmetric HESR collider GeV/c 2 ≤ M  ≤ 2.5 GeV/c 2 PANDA

Drell-Yan Process and Background Background studies: needed rejection factor of 10 7 Drell-Yan: pp ->  +  - X cross section   1 s = 30 GeV 2 Background: pp ->  +  - X, 2  + 2  - X,…… cross section    b m  = 105 MeV/c 2 ; m  145 MeV/c 2 average primary pion pairs:  1.5

DY Vertex UNPOLARISEDSINGLE-POLARISED 500KEv included in asymmetries Acceptance corrections crucial! 1 < q T < 2 GeV/c 2 < q T < 3 GeV/c xPxP xPxP xPxP xPxP xPxP xPxP Physics Performance Report for PANDA arXiv:

R = L  ·σ· ɛ = 2·10 32 cm -2 s -1 × x 0.8· cm 2 × 0.33 = 0.05 s -1 ~ 130 Kev/month Statistical errors for 500KEv generated xPxP ) ) xPxP xPxP Physics Performance Report for PANDA arXiv: DY Vertex

3 different systems contain double strangeness (S = -2) Doubly strange hypernucleus: Double hypernucleus: Exotic hyperatom : p p  n n p p   n n p  e-e- n p n Interactions:  - -nucleus: interplay between the Coulomb and nuclear potential Interactions:  - N Interactions:  From  - hypernucleus to  hypernucleus: after   N   STORI’11 - F. Iazzi Politecnico di Torino&INFN From hyperatom to  - hypernucleus:   absorption Double Strange Systems

in the region close to the nucleus: Atomic orbitals overlap nucleus: Coulomb and Nuclear interaction shift the levels and broad them shift and width can be measured (only last level ) p  e-e- n p n  - : M = [GeV/c 2 ];  = [s]; S = -2 Stopped X - are captured into atomic (high) levels X - undergoes an hyperatomic cascade X-rays are emitted in the range 0÷1.2 MeV ( 12 C) Absorption from an atomic level into nucleus ends the atomic cascade Bohr radius in lowest levels(n=2,3): ≈ 15 – 25 [fm] STORI’11 - F. Iazzi Politecnico di Torino&INFN X-ray spectroscopy (from  - ) in the range: ≈ 0.1 – 1 [MeV] No existing data! Which Physics with Hyperatoms?

Physics (I): ΛΛ strong interaction (only possible in double hypernuclei) Quarks: s-s interaction YY potential: attractive/repulsive? In One Boson Exchange mechanism: ΛΛ  ΛΛ : only non strange, I =0 meson exchange (w,h...) hyperfragments distribution: dependence on YY potential Physics (II): ΛΛ weak interaction (only possible in double hypernuclei) Non Mesonic Hyperon Induced Decay: ΛΛ  Λ n : (expected Γ Λn << Γ free ) (p Λ/N = 433 MeV/c) ΛΛ  Σ - p : (expected Γ Σp << Γ free ) (p Σ/N = 321 MeV/c) Measurements Strong interaction: DB ΛΛ ( A Z ΛΛ ) = B ΛΛ ( A Z ΛΛ ) - 2B Λ ( A-1 Z Λ ) (from g spectroscopy) Weak interaction: momentum of p from  decay momentum of p from    – p momentum of  – from ,   decay p p   n n STORI’11 - F. Iazzi Politecnico di Torino&INFN Several A data  core of ΛΛ interaction Formed by X - p  ΛΛ reaction inside nucleus Which Physics with ΛΛ Hypernuclei?  B  B.E. A

The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv:

The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv: Detector requirements: nearly 4  solid angle(partial wave analysis) high rate capability(2·10 7 annihilations/s) good PID( , e, , , K, p) momentum resolution(~1%) vertex info for D, K 0 S,  (cτ =123  m for D 0, p/m ≈ 2) efficient trigger(e, , K, D,  ) no hardware trigger(raw data rate ~ TB/s)

The Micro-Vertex Detector FAIRNESS2012, L. Zotti

The Micro-Vertex Detector FAIRNESS2012, L. Zotti

Tracking Detectors I. Lehmann, Spin-Praha 2012

Cherenkov Detectors I. Lehmann, Spin-Praha 2012

Electromagnetic Calorimeters I. Lehmann, Spin-Praha 2012

MDT layoutMDT cross section Muon Detector System Iarocci Tubes working in proportional mode Ar+CO 2 gas mixture Prototype ready FE electronics in production TDR for the PANDA Muon System, 2 nd Draft (May 2011) JINR - Dubna

Muon Detector Layout MDT’sWiresStrips Barrel End Cap Muon Filter Forward Range System Total Range System Prototype JINR - Dubna

DIRC MVD EMC Physics Performance Report for PANDA arXiv: STT PANDA PID Requirements: particle identification essential for PANDA momentum range 200 MeV/c – 10 GeV/c Extreme high rates 2·10 7 Hz good particle separation (K- e ) different detectors needed for PID Particle Identification

All the details of the P ANDA experimental program are reported in the “Physics Performance Report”. Within this document, we present the results of detailed simulations performed to evaluate detector performance on many benchmark channels. arXiv: v1 PANDA Phyisics Performance Report

Summary  PANDA physics program  unique program accessible with antiproton beams  addresses key questions  high discovery potential  high statistics and high precision results  Beginning in 2018