Charm Klaus Peters Ruhr-Universität Bochum and GSI Darmstadt Beijing, Jan 14, 2004.

Slides:



Advertisements
Similar presentations
Hadron Physics with Antiprotons – the PANDA Program Olaf N. Hartmann GSI Darmstadt, Germany INPC 2004 · Göteborg, Sweden.
Advertisements

Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Guenther Rosner FAIR - UK DL, 11/10/06 1 Collaboration Universität Basel, IHEP Beijing, [University of Birmingham] Ruhr- Universität Bochum,
Klaus Peters - GSI Future - Physics with Antiprotons
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Hadron Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003.
Russian Contribution to PANDA Project (Part I) Dmitry Morozov, IHEP (Protvino) 1st FRRC International Seminar Moscow, ITEP June
Hybrids and Glueballs in the light of antiproton reactions pBar Workshop GSI, Klaus Peters Ruhr-Universität Bochum.
PANDA Ulrich Wiedner, FAIR PAC meeting, March 14, 2005.
Physics with the PANDA Detector at GSI
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Charmonium Spectroscopy: Missing or Unconfirmed States Diego Bettoni INFN – Sezione di Ferrara International Workshop on Physics with Antiprotons at GSI.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
Klaus Peters Ruhr-Universität Bochum GLUONIC 2003 Jefferson Lab Newport News, May 15, 2003 Exotic
Sep. 17, 2003KTB The future GSI facility Physics with antiprotons at the GSI future facility The PANDA detector Target options and vertex detector, triggers.
Journée Thématique IPN Orsay, 2004 PANDA, a new detector for hadronic physics at GSI (FAIR) Carsten Schwarz, GSI ● The FAIR facility  HESR Storage ring.
Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.
New Opportunities for Hadron Physics with the Planned PANDA Detector
Antiproton Requirements for Klaus Peters KPIII/HPI, GSI Darmstadt IKF, JWGU Frankfurt p-Workshop, GSI, Darmstadt Dec 3, 2007.
Charmonium Spectroscopy at  PANDA Diego Bettoni INFN, Ferrara, Italy for the  PANDA Collaboration Mainz, Germany, 19 November 2009.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
Polish-German Meeting, Warszawa, Search for exotic hadrons with the PANDA detector Jan Kisiel Institute of Physics, University of Silesia Katowice,
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
The PANDA experiment at FAIR Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara representing the PANDA collaboration Charm 2007 Cornell University,
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
Klaus Peters Ruhr-Universität Bochum FSU, Feb 21, 2003 at the High Energy Storage GSI.
Physics with open charm Andrey Sokolov IKP I FZ Jülich.
1May 27, 2002Klaus Peters - GSI Future - Physics with Antiprotons.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Klaus Peters Ruhr-Universität Bochum U Cincinnati, Nov 18, 2002 FNAL, Batavia, Nov 20, 2002 JLab, Newport News, Nov 22, 2002 TRIUMF, Vancouver, Nov 28,
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
H. Koch, SMI/ÖAW Symposium Vienna, September 1, 2006 Physics Goals of PANDA  Introduction – The PANDA Project – PANDA and HESR – Status of the PANDA Project.
Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation.
Working Group 5 Summary David Christian Fermilab.
D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h.
D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h.
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Klaus Peters Ruhr-Universität Bochum Yokohama, March 3, 2003 Charmed
H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.
QCD Exotics and Charmonium Klaus Peters Ruhr-University Bochum 2nd Workshop "Challenges and Opportunities at the New International Accelerator Facility.
The PANDA detector at the future FAIR laboratory Klaus Föhl on behalf of the PANDA collaboration 12 July 2007 SPIN-Praha-2007 and Edinburgh 8 August 2007.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Paola Gianotti - LNF  Goals and achievements in meson spectroscopy: LEAR and FermiLab activities  Overview of the GSI Future Project  The Antiproton.
Heavy flavour capabilities with the ALICE TRD Benjamin Dönigus ISNP 2008 Erice/Sicily.
Workshop JINR/BMBF18.Jan.05, H.O. PANDA at FAIR Facility for Antiproton and Ion Research Herbert Orth GSI Darmstadt.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
Physics with open charm mesons at
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Physics with the  PANDA Detector at GSI Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Riunione WG Fisica Adronica e dello Spin Roma, 7.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
Korea-EU Alice 2004 Su Houng Lee Hungchong Kim, Taesoo Song, Yongjae Park, Yongshin Kwon (Osaka), Youngsoo Son, Kyungchul Han, Kyungil Kim Nuclear and.
The DIRC projects of the PANDA experiment at FAIR
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
– A Novel Detector For Frontier Physics Andrey Sokolov Institute of Nuclear Physics, Jülich Research Center, Germany XVIII International Baldin.
Günther Rosner FAIR UK DL, 25/01/06 1 antiProton Annihilation at DArmstadt Physics programme  Quark confinement: Charmonium spectroscopy 
Introduction: Why is QCD so much fun? The Physics: Glue and Charm:
Exotic and non-Exotic Charmonium Spectroscopy with FAIR Klaus Peters on behalf of the PANDA Collaboration GSI and U Frankfurt TU Munich, Oct 11,
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
June 25, 2016 Mitglied der Helmholtz-Gemeinschaft The PANDA Experiment at FAIR XLIX International Winter Meeting on Nuclear Physics, Bormio 2011 | Tobias.
PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
Nuclear Physics -- Today and Tomorrow From the infinitely strong –
Plans for nucleon structure studies at PANDA
PANDA and Charmonium Prospects at FAIR
Klaus Peters Ruhr-Universität Bochum GLUONIC 2003 Jefferson Lab Newport News, May 15, 2003 Exotic
Physics Opportunities with heavy quark system at FAIR
Presentation transcript:

Charm Klaus Peters Ruhr-Universität Bochum and GSI Darmstadt Beijing, Jan 14, 2004

2 K. Peters - Charm Panda Where is Darmstadt ? GSI

3 K. Peters - Charm Panda Overview The Panda Physics Program Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei (Double) Hypernuclei Many further options Detector Concepts for Panda

4 K. Peters - Charm Panda The GSI Future Facility Existing GSI Facilities Hadron Physics Plasma Physics Condensed Baryonic Matter Atomic Physics Rare Isotope Beams

5 K. Peters - Charm Panda The GSI Future Facility Panda

6 K. Peters - Charm Panda The Antiproton Facility

7 K. Peters - Charm Panda The Antiproton Facility Antiproton production similar to CERN, HESR = High Energy Storage Ring Production rate 10 7 /sec P beam = GeV/c N stored = 5 x p Gas-Jet/Pellet/Wire Target High luminosity mode Luminosity = 2 x cm -2 s -1 p/p ~ (stochastic cooling) High resolution mode p/p ~ (electron cooling) Luminosity = cm -2 s -1

8 K. Peters - Charm Panda QCD running coupling constant transition from perturbative to non-perturbative regime Q 2 [GeV 2 ] perturbative QCDconstituent quark confinement mesons and baryons RnRn r [fm] Transition from the quark-gluon to the hadronic degrees of freedom perturbativestrong QCD

9 K. Peters - Charm Panda Hybrid mixing Glueball mixing Level Mixing Light quark problem the mixing Mixing broad states high level density I=1I=0 nn I=0 ss I=½ a1a1 f1f1 f 1 ’K 1B b1b1 h1h1 h 1 ’K 1A J PC =J P+ J PC =J P- Kaon mixing strong interaction C undefined K 1A -K 1B Isoscalar mixing strong interaction I G, J PC identical η-η‘ Isospin mixing elm interaction ΔI=1 ρ-ω

10 K. Peters - Charm Panda Level Mixing Light quark problem the mixing Mixing broad states high level density Better: narrow states and/or lower level density charmed systems !

11 K. Peters - Charm Panda Charmonium Physics D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) M cc [GeV/c 2 ] η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h 1c (1 1 P 1 ) D*D* ψ(3 3 S 1 ) p p [GeV/c] ψ(2 3 S 1 ) χ c0 (2 3 P 0 ) χ c1 (2 3 P 1 ) χ c2 (2 3 P 2 ) h 1c (2 1 P 1 ) η c (3 1 S 0 ) J P = (0,1,2) (1,2,3) - … Exclusive Channels Helicity violation G-Parity violation Higher Fock state contributions Open questions … η c – inconsistencies η c ’ - ψ(2S) splitting h 1c – unconfirmed Peculiar ψ(4040) Terra incognita for 2P and 1D-States

12 K. Peters - Charm Panda It is extremely important to identify as many missing states above the open charm threshold as possible and to confirm the ones for which we only have a weak evidence This will require high-statistics small-step scans of the entire energy region accessible at GSI Charmonium States above the DD threshold

13 K. Peters - Charm Panda MeV3510 CBall ev./2 MeV 100 E CM Charmonium Physics e + e - interactions: Only 1 -- states are formed Other states only by secondary decays moderate mass resolution pp reactions: All states directly formed very good mass resolution CBall E E 835 ev./pb  c1 CBall, Edwards et al. PRL 48 (1982) 70 E835, Ambrogiani et al., PRD 62 (2000)

14 K. Peters - Charm Panda E CM Resonance Scan Measured Rate Beam Profile Resonanc e Cross Section small and well controlled beam momentum spread p/p is extremely important

15 K. Peters - Charm Panda Charmonium Physics with pp Expect 1-2 fb -1 (like CLEO-C) pp (>5.5 GeV/c) J/ψ10 7 /d pp (>5.5 GeV/c) χ c2 (J/ψγ10 5 /d pp (>5.5 GeV/c) η c ´(10 4 /d| rec. ? Comparison of to E835 charged tracksdetector with magnetic field 15 GeV/cmaximum mom. instead of 9 GeV/c 10x higherLuminosity than achieved before 10x smallerδp/p stable conditionsdedicated high energy storage ring

16 K. Peters - Charm Panda   Charmed Hybrids LQCD: gluonic excitations of the quark-antiquark-potential may lead to bound states -potential for one-gluon exchange -potential from excited gluon flux m Hcc ~ GeV/c 2 Light charmed hybrids could be narrow if open charm decays are inaccessible or suppressed   important and r Breakup R/r 0 V( R )/GeV J/ψ χcχc ψ‘ψ‘ HccHcc D

17 K. Peters - Charm Panda S1S1 S2S2 S=S 1 +S 2 J=L+S P=(-1) L+1 C=(-1) L+S L Simplest Hybrids S-Wave+Gluon (qq) 8 g with () 8 =coloured 1 S 0  3 S 1 combined with a 1 + or 1 - gluon Gluon1 – (TM) 1 +(TE) 1 S 0, 0 – –– 3 S 1, 1 –– – – –+ Exotic J PC cannot! be formed by qq

18 K. Peters - Charm Panda Proton-Antiproton Annihilation Productionall J PC available Formationonly selected J PC p p recoil p p

19 K. Peters - Charm Panda Proton-Antiproton Annihilation Gluon rich process creates gluonic excitation directly cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production even at low momenta large exotic content has been proven G M p p G p p Productionall J PC available only selected J PC p p H Formation nngnng H p p ssg/ccg M p p H nngnng M H p p

20 K. Peters - Charm Panda Exotics in Proton-Antiproton Exotics are heavily produced in pp reactions High production yields for exotic mesons (or with a large fraction of it) f 0 (1500)  ~25 % in 3  f 0 (1500)  ~25 % in 2   1 (1400)  >10 % in      Interference with other well known (conventional) states is mandatory for the phase analysis Crystal Barrel

21 K. Peters - Charm Panda p Momentum [GeV/c] Mass [GeV/c 2 ] Two body thresholds Molecules Gluonic Excitations qq Mesons Hybrids Hybrids+Recoil Glueball Glueball+Recoil ΛΛ ΣΣ ΞΞ ΛcΛcΣcΣcΞcΞcΛcΛcΣcΣcΞcΞc ΩcΩcΩcΩc ΩΩD DsDsDsDs qqccqqccqq nng,ssgccgccg ggg,gg light qq π,ρ,ω,f 2,K,K *c J/ψ, η c, χ cJ nng,ssgccgccg ggg Accessible Charmed Hadrons at GSI Other exotics with identical decay channels  same region conventional charmonium exotic charmonium

22 K. Peters - Charm Panda Heavy Glueballs Light gg/ggg-systems are complicated to identify (mixing!) Exotic heavy glueballs m(0 +- ) = 4140 (50)(200) MeV m(2 +- ) = 4740 (70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e + e - Flavour-blindness predicts decays into charmed final states too Same run period as hybrids In addition: scan m>2 GeV/c 2 Morningstar,Peardon, PRD60(1999)34509 Morningstar,Peardon, PRD56(1997)

23 K. Peters - Charm Panda Open charm discoveries The D S ± Spectrum |cs> +c.c. was not expected to reveal any surprises, but chiral and heavy quark aspects meet Potential model Old measurements New observations 00 11 00 11 22 33 DsDs Ds*Ds* D sJ * (2317) D s1 m [GeV/c 2 ] D0KD0K D*K D sJ (2458) D s2 JPJP # 1267  53 Events in peak Combinatorial D S *+  D S *+ (2112) BABARBABAR D sJ * (2317)

24 K. Peters - Charm Panda D s[J] [*]± Pairproduction in pp Annihilation Associated Pair m/MeV/c 2 JPJP Channel (+cc)Final State D s (1968.5) ,1 -,2 +,3 -,4 + Ds+Ds-Ds+Ds- 2K - 2K +  +  - D s (1968.5)D s * (2112.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s - )2K - 2K +  +  -  D s * (2112.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s - )2K - 2K +  +  -  D s (1968.5)D sJ * (2317.5) ,1 +,2 -,3 +,4 - D s + (D s -  0 )2K - 2K +  +  -  0 D s (1968.5)D sJ (2458.5) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) 0 )2K - 2K +  +  -  0  D s * (2112.4)D sJ * (2317.5) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  0 )2K - 2K +  +  -  0  D s (1968.5)D s1 (2535.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D *- K 0 ) 2K - K + K S  + 2 - ( 0 ) D s (1968.5)D sJ * (2572.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D 0 K - ) 2K - 2K +  +  - ( 0 ) D s * (2112.4)D sJ (2458.5) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) 0 )2K - 2K +  +  -  0  D sJ * (2317.5) ,1 -,2 +,3 -,4 + (D s +  0 )(D s -  0 )2K - 2K +  +  - 2 0 D s * (2112.4)D s1 (2535.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D *- K 0 )2K - K + K S  + 2 - ( 0 ) D s * (2112.4)D sJ * (2572.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D 0 K - )2K - 2K +  +  - ( 0 ) D s (1968.5)D 1 * (2770) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s -  +  - )2K - 2K + 2 + 2 - D sJ * (2317.5)D sJ (2458.5) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s (1968.5)D 2 (2870) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D s1 (2535.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0 D s * (2112.4)D 1 * (2770) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D sJ * (2572.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D 0 K - )2K - 2K +  +  - (1-2) 0 D sJ (2458.5) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s * (2112.4)D 2 (2870) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ (2458.5)D s1 (2535.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0  D sJ (2458.5)D sJ * (2572.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D 0 K - )2K - 2K +  +  - (1-2) 0  D s1 (2535.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D *+ K 0 )(D *- K 0 )K - K + 2K S 2 + 2 - (0-2) 0

25 K. Peters - Charm Panda Charmonium mass shift in nuclear matter Quantu m numbers QCD 2 nd Stark eff. Potential model QCD sum rules Effects of DD loop ηcηc 0 -+ –8 MeV [1]–5 MeV [4] J/ψ 1 -- –8 MeV [1]-10 MeV [3]–7 MeV [4]< 2 MeV [5]  c0,1,2 0,1, MeV [2]-60 MeV [2] ψ(3686) MeV [2]< 30 MeV [2] ψ(3770) MeV [2]< 30 MeV [2] [1] Peskin, NPB 156(1979)365, Luke et al., PLB 288(1992)355 [2] Lee, nucl-th/ [3] Brodsky et al, PRL 64(1990)1011 [4] Klingel, Kim, Lee, Morath, Weise, PRL 82(1999)3396 [5] Lee, Ko PRC 67(2003)038202

26 K. Peters - Charm Panda Charmed Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. DD 50 MeV D D+D+ vacuum nuclear medium  K 25 MeV 100 MeV K+K+ KK  

27 K. Peters - Charm Panda Charmonium in the Nuclei Lowering of the D + D - mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width (1D)Γ=2040 MeV (2S)Γ=0,322,7 MeV Experiment: Dilepton-Channels and/or highly constrained hadronic channels Idea Study relative changes of yield and width of the charmonium states. 3 GeV/c 2 Mass (1 3 D 1 ) (1 3 S 1 ) (2 3 S 1 )  c (1 1 S 0 ) (3 3 S 1 )  c2 (1 3 P 2 )  c1 (1 3 P 1 )  c1 (1 3 P 0 ) 3,74 3,64 3,54 vacuum 1010 2020

28 K. Peters - Charm Panda J/ψ Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP Reaction p + A  J/ψ + (A-1) Fermi-smeared cc-Production J/ψ, ψ’ or interference region selected by p-Momentum Longitudinal und transverse Fermi-distribution is measurable e+e+ ee J/ (e + e  ) pb p(pbar) GeV/c FF J/

29 K. Peters - Charm Panda Further Experiments and Optional extensions Hypernuclear physics 3 rd dimension of nuclear chart Focus: Double Hypernuclei Inverted DVCS - WACS Measure dynamics of quarks and gluons in a hadron Handbag diagram – electromagnetic final states Proton Formfactors at large Q 2 s up to 25 GeV 2 /c 4 D (S) -Physics Spectroscopy: Threshold production BR and decay Dalitz plots with high statistics CP-Violation in the D-Sector

30 K. Peters - Charm Panda Proposed Detector (Overview) High Rates Total σ ~ 55 mb Vertexing (σ p,K S,Λ,…) Charged particle ID (e ±,μ ±,π ±,p,…) Magnetic tracking Elm. Calorimetry (γ,π 0,η) Forward capabilities (leading particles) Sophisticated Trigger(s)

31 K. Peters - Charm Panda

32 K. Peters - Charm Panda Tracking: Straw Tube Tracker Number of double layers Skew angle of dbl layers 1 and 15 Skew angle of dbl layers o 2 o -3 o Straw tube wall thickness Wire thickness Gas Length Diameter of tubes in double layers 1-5, 6-10, and Number of straw tubes 26 mm 20 mm 90%He 10%C 4 H cm 4 mm 6 mm 8 mm 8734 Transverse resolution s x,y Longitudinal resolution s z 150 mm 1 mm

33 K. Peters - Charm Panda PID: DIRC (Cherenkov) less space than aero gel  costs of calorimeter no problems with field

34 K. Peters - Charm Panda Electromagnetic Calorimeter Detector materialPbWO 4 (or BGO) Photo sensorsAvalanche Photo Diodes Crystal size  35 x 35 x 150 mm 3 (i.e 1.5 x 1.5 R M 2 x 17 X 0 ) Energy resolution 1.54 % / E[GeV] % (PWO) Time resolution   130 ps Total number of crystals7150

35 K. Peters - Charm Panda Simulation on ppψ(3770)DD using D ± K ± π ± π ± background signal-to-background 1:O(10 7 ) background from DPM generator plain reconstruction signal-to-background 6:1 mass difference Δm=m 2K4π -m K2π,a -m K2π,b m=Δm+2m D,PDG signal-to-background O(100):1 including Kalman fitting expect another factor of Counts / 0.01 GeV / hour Mass from Δm (GeV/c 2 ) Counts / hour / 0.01 GeV counts/hour/0.01 GeV Mass (GeV/c 2 )

36 K. Peters - Charm Panda Simulation on ppη c γγ FermiLab E835 |cosθ * |<0.25 σ(η c γγ) = 200 nb signal-to-background 1:1 main background π 0 γ and π 0 π 0 main cuts missing mass squared <0.16 GeV 2 /c 4 cosθ γγ < signal-to-background (5.1±0.4):1 Mass (GeV/c 2 ) counts/10k/0.02 GeV

37 K. Peters - Charm Panda Participating Institutes (with Representative in the Coordination Board) U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia U & INFN Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk TU München U Münster BINP Novosibirsk 45 Institutes from 12 Countries: U Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala IMEP Vienna SINS Warsaw U Warsaw

38 K. Peters - Charm Panda Press Release 16/2003, Bulmahn gives green light for large-scale research equipment "We are securing an international top position for German basic research"...Basic research in the natural sciences has a long tradition in Germany. Its success is inextricably linked with the use of large-scale equipment at national and international research centres. "With the new concept, basic research in Germany will start from an excellent position when entering a new decade of successful work", Minister Bulmahn said. Together with European partners, the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt is to develop further its equipment in a phased approach and become a leading european physics centre. At least 25% of the costs amounting to €675 million are to be shouldered by foreign partners.

39 K. Peters - Charm Panda Competition BES, BNL, CLEO-C, Da Φ ne, Hall-D, JHF TopicCompetitor Confinement Charmonium all cc states with high resolution CLEO-C only 1 –– states Gluonic Excitations charmed hybrids heavy glueballs CLEO-C light glueballs Hall-D light hybrids Nuclear Interactions D-mass shift J/ψ absorption (T~0) Da Φ ne K-mass shift Hypernuclei γ-spectroscopy of Λ- and ΛΛ–hypernuclei BNL indirect evidence only JHF single HN Open Charm Physics Rare D-Decays CP-physics in Hadrons CLEO-C rare D-Decays CP-physics in D-Mesons ν,K-beams JHF rare K-Decays (?) neutrino physics

40 K. Peters - Charm Panda Summary & Outlook The PANDA experiment at the antiproton facility GSI addresses many important questions in open and hidden charm physics Status: Letter of Intent: Jan. 15, 2004 Technical Report: Dec. 15, 2004 Technical Design Report: Commissioning: 2011