Outline  A short history of spin zero ground state dominance  Present status of this Physical mechanism remains Physical mechanism.

Slides:



Advertisements
Similar presentations
1 The and -Z Exchange Corrections to Parity Violating Elastic Scattering 周海清 / 东南大学物理系 based on PRL99,262001(2007) in collaboration with C.W.Kao, S.N.Yang.
Advertisements

Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
Chapter 11 Inferences About Population Variances
Generalized pairing models, Saclay, June 2005 Generalized models of pairing in non-degenerate orbits J. Dukelsky, IEM, Madrid, Spain D.D. Warner, Daresbury,
Nuclear Collective Dynamics II, Istanbul, July 2004 Symmetry Approach to Nuclear Collective Motion II P. Van Isacker, GANIL, France Symmetry and dynamical.
14-18 June 2005 International Conference on Finite Fermi Systems: Nilsson Model 50 years, Lund, Sweden Stuart Pittel Bartol Research Institute, University.
Collective Response of Atom Clusters and Nuclei: Role of Chaos Trento April 2010 Mahir S. Hussein University of Sao Paulo.
Nucleon-pair transfer-intensities nuclear shape-phase transitions
CNRS, Saclay, 6 June The Shell Model and the DMRG Approach Stuart Pittel Bartol Research Institute and Department of Physics and Astronomy, University.
Chaos in the N* spectrum Vladimir Pascalutsa European Centre for Theoretical Studies (ECT*), Trento, Italy Supported by NSTAR 2007 Workshop.
Novosibirsk, May 23, 2008 Continuum shell model: From Ericson to conductance fluctuations Felix Izrailev Instituto de Física, BUAP, Puebla, México Michigan.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十二讲 ) 离散数学. 例 设 S = {a , b} , ρ ( S ) ={ ,{a},{b},{a , b}} 是 S 的幂集合, 则( ρ ( S ),∩, ∪)是一个格。 规定映射 g 为: g (  ) =
Random Matrices Hieu D. Nguyen Rowan University Rowan Math Seminar
Frequency Dependence of Quantum Localization in a Periodically Driven System Manabu Machida, Keiji Saito, and Seiji Miyashita Department of Applied Physics,
第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
Open Problems in Nuclear Level Densities Alberto Ventura ENEA and INFN, Bologna, Italy INFN, Pisa, February 24-26, 2005.
INT Seattle 3/14/2002M Horoi - Central Michigan University 1 Central Michigan Shell Model Code (CMichSM): Present and Future Applications  Mihai Horoi,
Nucleon Optical Potential in Brueckner Theory Wasi Haider Department of Physics, AMU, Aligarh, India. E Mail:
Reversing chaos Boris Fine Skolkovo Institute of Science and Technology University of Heidelberg.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Outline  Simple comments on regularities of many-body systems under random interactions  Number of spin I states for single-j configuration  J-pairing.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Thanks go to many collaborators. In nuclear reaction theory (excluding fission and precompound reactions) the main contributors were C. Mahaux C. A. Engelbrecht.
Statistical properties of nuclei: beyond the mean field Yoram Alhassid (Yale University) Introduction Beyond the mean field: correlations via fluctuations.
Even-even nuclei odd-even nuclei odd-odd nuclei 3.1 The interacting boson-fermion model.
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
Structure of Warm Nuclei Sven Åberg, Lund University, Sweden Fysikersamfundet - Kärnfysiksektionen Svenskt Kärnfysikmöte XXVIII, november 2008, KTH-AlbaNova.
Structure of Warm Nuclei Sven Åberg, Lund University, Sweden.
Chaos in hadron spectrum Vladimir Pascalutsa European Centre for Theoretical Studies (ECT*), Trento, Italy Supported by JLab ( Newport News,
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Efimov Physics in a Many-Body Background
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
Outline  A short history of spin zero ground state dominance  Present status of this Physical mechanism remains Collectivity of low-lying.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Mikhail Bashkanov Encounters with Di-Baryons from the ABC-effect to a Resonance in the Proton-Neutron System Wasa-at-COSY.
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
Isospin and mixed symmetry structure in 26 Mg DONG Hong-Fei, BAI Hong-Bo LÜ Li-Jun, Department of Physics, Chifeng university.
Hello, Everyone! Part I Review Review Exercise Define the term: Sapir-Whorf Hypothesis.
Regular structure of atomic nuclei in the presence of random interactions.
Time-dependent Schrodinger Equation Numerical solution of the time-independent equation is straightforward constant energy solutions do not require us.
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
IAEA Workshop on NSDD, Trieste, November 2003 The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons.
Nuclear Collective Excitation in a Femi-Liquid Model Bao-Xi SUN Beijing University of Technology KITPC, Beijing.
Shell Model with residual interactions – mostly 2-particle systems Start with 2-particle system, that is a nucleus „doubly magic + 2“ Consider two identical.
上海交通大学物理系 赵玉民. 提纲 随机相互作用原子核低激发态主要结果 随机相互作用原子核低激发态主要结果 最近其他研究组几个工作 最近其他研究组几个工作 我们最近的工作 我们最近的工作 展望 展望.
Application of the operator product expansion and sum rules to the study of the single-particle spectral density of the unitary Fermi gas Seminar at Yonsei.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Shell structure: ~ 1 MeV Quantum phase transitions: ~ 100s keV Collective effects: ~ 100s keV Interaction filters: ~ keV Binding energies, Separation.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Q UANTUM CHAOS IN THE COLLECTIVE DYNAMICS OF NUCLEI Pavel Cejnar, Pavel Stránský, Michal Macek DPG Frühjahrstagung, Bochum 2009, Germany Institute.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
MICROSCOPIC CALCULATION OF SYMMETRY PROJECTED NUCLEAR LEVEL DENSITIES Kris Van Houcke Ghent University In collaboration with S. Rombouts, K. Heyde, Y.
Interacting boson model s-bosons (l=0) d-bosons (l=2) Interpretation: “nucleon pairs with l = 0, 2” “quanta of collective excitations” Dynamical algebra:
Hisao Hayakawa (YITP, Kyoto University) based on collaboration with T. Yuge, T. Sagawa, and A. Sugita 1/24 44 Symposium on Mathematical Physics "New Developments.
The i 13/2 Proton and j 15/2 Neutron Orbital and the SD Band in A~190 Region Xiao-tao He En-guang Zhao En-guang Zhao Institute of Theoretical Physics,
Review of lecture 5 and 6 Quantum phase space distributions: Wigner distribution and Hussimi distribution. Eigenvalue statistics: Poisson and Wigner level.
ユニタリー・フェルミ気体の一粒子スペ クトル関数に対する和則の構築 基研研究会「熱場の量子論とその応用」 Philipp Gubler (RIKEN, Nishina Center) Collaborators: Y. Nishida (Tokyo Tech), N. Yamamoto.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Dynamics of point particle system 质点系动力学 Center of mass, center of mass frame Define center of mass Total momentum.
HIRG 重离子反应组 Heavy Ion Reaction Group GDR as a Probe of Alpha Cluster in Light Nuclei Wan-Bing He ( 何万兵 ) SINAP-CUSTIPEN Collaborators : Yu-Gang.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Symmetry energy and pion production in the Boltzmann-Langevin approach
Isovector and isoscalar pairing in low-lying states of N = Z nuclei
Nice 2017 Introduction Quantum chaos and the nuclear many-body system
Two atoms in a double well: Exact solution with a Bethe ansatz
Presentation transcript:

Outline  A short history of spin zero ground state dominance  Present status of this Physical mechanism remains Physical mechanism remains Collectivity of low-lying states by using Collectivity of low-lying states by using Energy centroids of fixed spin Energy centroids of fixed spin states  Some simpler quantities can be studied Some simpler quantities can be studied for other for other regularities

Random two-body interactions 1958 Wigner introduced Gaussian orthogonal ensemble of random matrices (GOE) in understanding the spacings of energy levels observed in resonances of slow neutron scattering on heavy nuclei. Ref: Ann. Math. 67, 325 (1958) 1970’s French, Wong, Bohigas, Flores introduced two-body random ensemble (TBRE) Ref: Rev. Mod. Phys. 53, 385 (1981); Phys. Rep. 299, (1998); Phys. Rep. 347, 223 (2001). Original References: J. B. French and S.S.M.Wong, Phys. Lett. B33, 449(1970); O. Bohigas and J. Flores, Phys. Lett. B34, 261 (1970). Other applications: complicated systems (e.g., quantum chaos)

Two-body random ensemble (TBRE) One usually choose Gaussian distribution for two-body random interactions There are some people who use other distributions, for example, A uniform distribution between -1 and 1. For our study, it is found that these different distribution present similar statistics.

In 1998, Johnson, Bertsch, and Dean discovered that spin parity =0+ ground state dominance can be obtained by using random two-body interactions (Phys. Rev. Lett. 80, 2749) . This result is called 0 g.s. dominance. Similar phenomenon was found in other systems, say, sd-boson systems. Ref. C. W. Johnson et al., PRL80, 2749 (1998); R.Bijker et al., PRL84, 420 (2000); L. Kaplan et al., PRB65, (2002).

An example

Some recent papers R. Bijker, A. Frank, and S. Pittel, Phys. Rev. C60, (1999); D. Mulhall, A. Volya, and V. Zelevinsky, Phys. Rev. Lett.85, 4016(2000); Nucl. Phys. A682, 229c(2001); V. Zelevinsky, D. Mulhall, and A. Volya, Yad. Fiz. 64, 579(2001); D. Kusnezov, Phys. Rev. Lett. 85, 3773(2000); ibid. 87, (2001); L. Kaplan and T. Papenbrock, Phys. Rev. Lett. 84, 4553(2000); R.Bijker and A.Frank, Phys. Rev. Lett.87, (2001); S. Drozdz and M. Wojcik, Physica A301, 291(2001); L. Kaplan, T. Papenbrock, and C. W. Johnson, Phys. Rev. C63, (2001); R. Bijker and A. Frank, Phys. Rev. C64, (R)061303(2001); R. Bijker and A. Frank, Phys. Rev. C65, (2002); L. Kaplan, T.Papenbrock, and G.F. Bertsch, Phys. Rev. B65, (2002); L. F. Santos, D. Kusnezov, and P. Jacquod, Phys. Lett. B537, 62(2002); Y.M. Zhao and A. Arima, Phys. Rev.C64, (R)041301(2001); A. Arima, N. Yoshinaga, and Y.M. Zhao, Eur.J.Phys. A13, 105(2002); N. Yoshinaga, A. Arima, and Y.M. Zhao, J. Phys. A35, 8575(2002); Y. M. Zhao, A. Arima, and N. Yoshinaga, Phys. Rev.C66, (2002); Y. M. Zhao, A. Arima, and N. Yoshinaga, Phys. Rev. C66, (2002); P.H-T.Chau, A. Frank, N.A.Smirnova, and P.V.Isacker, Phys. Rev. C66, (2002); Y.M.Zhao, A. Arima, N. Yoshinaga, Phys.Rev.C66, (2002); Y. M. Zhao, S. Pittel, R. Bijker, A. Frank, and A. Arima, Phys. Rev. C66, R41301 (2002); Y. M. Zhao, A. Arima, G. J. Ginocchio, and N. Yoshinaga, Phys. Rev. C66,034320(2003); Y. M. Zhao, A. Arima, N. Yoshinga, Phys. Rev. C68, (2003); Y. M. Zhao, A. Arima, N. Shimizu, K. Ogawa, N. Yoshinaga, O. Scholten, Phys. Rev. C70, (2004); T. Papenbrock and H. A. Weidenmueller, Phys. Rev. Lett. 93, (2004); Y.M.Zhao, A. Arima, K. Ogawa, Phys. Rev. C (in press) Review papers : Y.M.Zhao, A. Arima, and N. Yoshinaga, Phys. Rep. 400, 1(2004); V. Zelevinsky and A. Volya, Phys. Rep. 391, 311 (2004).

Two interesting results  Empirical method by Tokyo group reasonably applicable to all systems  Mean field method by Mexico group sd, sp boson systems

Empirical method by Tokyo group

d 玻色子情形

Phenomenological method Let find the lowest eigenvalue; Repeat this process for all.

Four fermions in a single-j shell

Why P(0) staggers periodically?  对四个粒子情形,如果 GJ=-1 其他两体力为 零,I=0的态只有一个非零的本征值.  I=0的态的数量随 j 呈规则涨落.

最大自旋态作基态的几率

A few examples

Parity distribution in the ground states  (A) Both protons and neutrons are in the shell which corresponds to nuclei with both proton number Z and neutron number N ~40;  (B) Protons in the shell and neutrons in the shell which correspond to nuclei with Z~40 and N~50;  (C) Both protons and neutrons are in the shell which correspond to nuclei with Z and N~82;  (D) Protons in the shell and neutrons in the shell which correspond to nuclei with Z~50 and N~82.

Collectivity in the IBM under random interactions

Energy centroids with fixed spin

Conclusion and prospect  Regularities of many-body systems under random interactions, including spin zero ground state dominance, energy centroids with various quantum numbers, collectivity, etc.  Suggestion: Try any physical quantities by random interactions  Questions: parity distribution, energy centroids, constraints of collectivity, and spin 0 g.s. dominance

Acknowledgements: Akito Arima (Tokyo) Naotaka Yoshinagana (Saitama) Kengo Ogawa (Chiba) Stuart Pittel (Delaware) R. Bijker (Mexico) J. N. Ginocchio (Los Alamos) Rick Casten (New Haven) Olaf Scholten (Groningen) V. K. B. Kota (Ahmedabad) Noritake Shimizu(Tokyo) Nobuaki Yoshida (Kansai) Igal Talmi (Weizman)