Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.

Slides:



Advertisements
Similar presentations
Martin G. Schultz, MPI Meteorology, Hamburg GEMS proposal preparation meeting, Reading, Dec 2003 GEMS RG Global reactive gases monitoring and forecast.
Advertisements

Algorithm improvements for Dutch OMI NO2 retrievals (towards v3.0)
Lok Lamsal, Randall Martin, Aaron van Donkelaar Folkert Boersma, Ruud Dirksen (KNMI) Edward Celarier, Eric Bucsela, James Gleason (NASA) E.S.
Evaluation of Satellite NO2 Stratospheric Columns with the SAOZ/NDACC UV-Vis Network J.-P. Pommereau 1, F. Goutail 1, A. Pazmino 1, D. Ionov 1,3, F. Hendrick.
Page 1 OMI Science Team Meeting, Helsinki, Finland, 24 – 27 June 2008M. Van Roozendael et al. On the usability of space nadir UV-visible observations for.
Assimilation of TES O 3 data in GEOS-Chem Mark Parrington, Dylan Jones, Dave MacKenzie University of Toronto Kevin Bowman Jet Propulsion Laboratory California.
Task Group 3 AT2 workshop, 30 Sept – 1 Oct 2008 Task Group 3 Achievements and Prospects Ankie Piters, KNMI.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
ATMOSPHERIC CHEMISTRY: FROM AIR POLLUTION TO GLOBAL CHANGE AND BACK Daniel J. Jacob.
Indirect Validation of Tropospheric Nitrogen Dioxide Retrieved from the OMI Satellite Instrument: Insight into the Seasonal Variation of Nitrogen Oxides.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Intercomparison methods for satellite sensors: application to tropospheric ozone and CO measurements from Aura Daniel J. Jacob, Lin Zhang, Monika Kopacz.
Bas Mijling Ronald van der A AMFIC Final Meeting ● Beijing ● 23 October 2009 Results of WP 5 : Air Quality Forecasting.
J.-F. Müller and T. Stavrakou IASB-BIRA Avenue Circulaire 3, 1180 Brussels AGU Fall meeting, Dec Multi-year emission inversion for.
TEMIS user workshop, Frascati, 8-9 October 2007 Tropospheric Formaldehyde (CH 2 O) from Satellite Observations. Isabelle De Smedt 1, M. Van Roozendael.
Lok Lamsal, Nickolay Krotkov, Randall Martin, Kenneth Pickering, Chris Loughner, James Crawford, Chris McLinden TEMPO Science Team Meeting Huntsville,
Air Quality Forecasting Bas Mijling Ronald van der A AMFIC Annual Meeting ● Beijing ● October 2008.
Tropospheric NO2 and ozone Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Jos de Laat, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Thessaloniki,
AMFIC third progress meeting MariLiza Koukouli & Dimitris Balis Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme.
AMFIC final meeting LAP/Auth validation activities Dimitris Balis & MariLiza Koukouli Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Figure (a-c). Latitude-height distribution of monthly mean ozone flux for the months of (a) January, (b) April and (c) July averaged over years 2000 to.
ANALYSIS OF TROPOSPHERIC OBSERVATIONS FROM GOME AND TOMS Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer Harvard University Kelly Chance, Thomas.
Folkert Boersma Reducing errors in using tropospheric NO 2 columns observed from space.
1 Traffic Restrictions Associated with the Sino-African Summit: Reductions of NO x Detected from Space Yuxuan Wang, Michael B. McElroy, K. Folkert Boersma.
Itsushi UNO*, Youjiang HE, Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, JAPAN Toshimasa OHARA, Jun-ichi KUROKAWA, Hiroshi.
SATELLITE OBSERVATIONS OF ATMOSPHERIC CHEMISTRY Daniel J. Jacob.
10-11 October 2006HYMN kick-off TM3/4/5 Modeling at KNMI HYMN Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the.
Status of the Development of a Tropospheric Ozone Product from OMI Measurements Jack Fishman 1, Jerald R. Ziemke 2,3, Sushil Chandra 2,3, Amy E. Wozniak.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
NO x emission estimates from space Ronald van der A Bas Mijling Jieying Ding.
Improving Retrievals of Tropospheric NO 2 Randall Martin, Dalhousie and Harvard-Smithsonian Lok Lamsal, Gray O’Byrne, Aaron van Donkelaar, Dalhousie Ed.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, 23 October 2009.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009,
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Barcelona, June 2009.
Folkert Boersma, D.J. Jacob, R.J. Park, R.C. Hudman – Harvard University H.J. Eskes, J.P. Veefkind, R.J. van der A, P.F. Levelt, E.J. Brinksma – KNMI A.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
Folkert Boersma Collaborators: Daniel J. Jacob, Miri Trainic, Yinon Rudich, Ruud Dirksen, and Ronald van der A Comparison of NO 2 air pollution in Israeli.
USE OF GEOS-CHEM BY SMITHSONIAN ASTROPHYSICAL OBSERVATORY AND DALHOUSIE UNIVERSITY Randall Martin Mid-July SAO Halifax, Nova Scotia.
ESA :DRAGON/ EU :AMFIC Air quality Monitoring and Forecasting In China Ronald van der A, KNMI Bas Mijling, KNMI Hennie Kelder KNMI, TUE DRAGON /AMFIC project.
Page 1 OMI ST Meeting #11, KNMI, De Bilt, The Netherlands, June 2006 Validation of OMI trace gas products Main contributors (this work): Michel Van.
MAX-DOAS observations of tropospheric aerosols and formaldehyde above China Tim Vlemmix Francois Hendrick Michel Van Roozendael Isabelle De Smedt Katrijn.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
DOAS workshop 2015, Brussels, July 2015
Quantifying uncertainties of OMI NO2 data
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Concurrent measurements of tropospheric NO2 from OMI and SCIAMACHY
Randall Martin Dalhousie University
Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer
Constraining Emissions with Satellite Observations
Satellite Remote Sensing of Ozone-NOx-VOC Sensitivity
Space-based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions Randall Martin Aaron Van Donkelaar Arlene Fiore.
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
SATELLITE OBSERVATIONS OF OZONE PRECURSORS FROM GOME
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Constraining the magnitude and diurnal variation of NOx sources from space Folkert Boersma.
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Intercomparison of tropospheric ozone measurements from TES and OMI
Randall Martin Mid-July
Presentation transcript:

Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008

Tropospheric NO 2

Tropospheric NO 2 from satellite measurements Observed total slant column Subtract stratospheric part (model) Convert slant column into vertical column (air mass factor, RT) Surface Stratospheric NO 2 Cloud Tropospheric NO 2

Retrieval approach CTM (TM4) Assimilation fed by satellite measurements (unpolluted pixels only) and ECMWF data gives: Estimation of stratospheric column A priori NO 2 profile  AMF trop Surface albedo + cloud info + a priori profile  AMF trop Measured column + stratospheric column + AMF trop  Tropospheric NO 2 column

GOME Archive: Apr Jul Format: HDF4 Local time: Monthly mean files –TOMS ASCII-format –ESRI grid format Pixel size: 320x80 km

SCIAMACHY version 1.1: July 2002 till today Format: HDF4 Local time: Monthly mean files: –TOMS ASCII-format –ESRI grid format –Regional images Pixel size is 60x30 km

OMI version 1.1: October 2004 till today Local time: Format: HDF5-EOS Monthly mean files –TOMS ASCII-format –ESRI grid format Pixel size: > 24x12 km

GOME-2 Data available: April 2007 till today Local time: Format: HDF5 Monthly mean files –TOMS ASCII-format –ESRI grid format Pixel size: 30x60 km

Trend in tropospheric NO 2 ( ) Trends with 95% confidence criterium

Trends in China Trend van der A et al., J. Geophys. Res., 111, 2006

Sources of tropospheric NO 2 NO x sources: –Anthropogenic (traffic, industry, power plants) –Soil emissions (grasslands, induced by rain) –Biomass burning (tropics, dry season) –Lightning (tropics) Phase shift to identify sources: –Anthropogenicwinter maximum –Soil emissionssummer maximum, rainfall –Biomass burningdry season –Lightning-

Observed NO 2 timeseries (monthly means ) Anthropogenic (Tehran) Biomass burning Ghana (10°N,0°) Soil West-China (40°N,100°E)

Month of maximum NO 2 GOME/SCIAMACHY TM model

OMI Concurrent measurements of tropospheric NO 2 from OMI and SCIAMACHY Retrieved with common, consistent algorithm Collocated, cloud-free measurements at common grid (0.5°x0.5°) Differences large over source regions, and larger than combined errors Differences in spectra (slant columns) and in AMF (profile shape) 10:00 hrs SCIAMACHY 13:40 hrs OMI August 2006

What does GEOS-Chem simulate? Relative decrease in NO2 column from 10am to 1:30 pm ObservedGEOS-Chem US: -16% -28% EU: -6%-13% China: -26%-22%

Summary Tropospheric NO2  GOME/SCIAMACHY NO2 data available for today, allowing trend analysis.  OMI data and GOME-2 is also available now.  Monitoring of China with SCIAMACHY/GOME-2 (overpass at 10.00/9.30 AM ) and OMI (overpass at PM)  Overpass files for OMI pixels within 100 km from station.

GOME tropospheric O3 columns R. van der A, J. de Laat, J. van Peet, O. Tuinder (KNMI)

Measuring tropospheric O3 column from space - air pollution/air quality & greenhouse gas - Stratosphere > 90 % of total O3 column - Troposphere < 10 % of total O3 column - Tropospheric O3 is highly variable in space and time: - Global: - in situ production (tropics and extra-tropics) - complex chemistry - Extratropics: - Stratosphere-troposphere exchange - Tropopause height variations - Clouds, aerosols (interpretation)

Limited height information [Degrees of Freedom for Signal] About 5 independent pieces of vertical information  Smoothing of actual profile !!  about 1 piece of tropospheric information [cf. Liu et al., JGR, 2005] separate troposphere – stratosphere !!! Directly measuring tropospheric O3 from space: GOME OPERA algorithm (Ozone ProfilE Retrieval Algorithm) Tuinder, van der A, van Oss, Mijling [KNMI] Non-linear Optimal Estimation [Rodgers], iterative, use of a-priori Courtesy J. Landgraf, SRON

New approach: data assimilation Determine SOC by assimilating OPERA O3 profiles using CTM (TM5) Then: TTOC = TOC - SOC Advantages: - No gaps in SOC  internal consistency - Better solution for “smoothing error” - Internally consistent tropopause - different O3 (profile) measurements can be used and even combined  Best available estimate of SOC

This figure was originally published in Liu et al. [JGR, 2006]. The upper panel shows the tropospheric O3 columns from GOME O3 profiles for a region over Indonesia in 1997 (7S, E). Added are also results from a chemistry-transport model calculation (GEOS-CHEM) with realistic emissions and nearby O3 sonde measurements. The lower panel is for a region over the central Pacific. Added are the black lines: the GOME TOC values from the KNMI OPERA algorithm.

Algorithm development and current status Assimilation system/algorithm development –Several problems in the system and algorithm – hampering long assimilation runs – were detected –Slow progress of solving problems due to long duration of assimilation runs to test stability –In the mean time … OPERA algorithm was also considerably improved (Tuinder and Mijling) New linearized strat. O3 chemistry scheme published Current status –Stable assimilation algorithm –Period 1996 to 2001 is available –Height depend error propagation in the assimilation included

Tropospheric Ozone data GOME tropospheric columns:  Data set complete  Low resolution => low quality  Small improvements possible  GOME-2 tropospheric columns:  Data set not available yet  High quality  Long processing time  GOME-2 tropospheric profiles:  Data set is available  Data can is difficult to interpret: averaging kernel and a- priori profile needed

End

Scheme of source identification AnthropogenicWinter maximum (outside tropics) Low variability BiomassWinter/Spring maximumHigh variability SoilSummer maximumHigh variability LightningNO 2 (above clouds) > NO 2 (clear-sky)

Source identification van der A et al., JGR, 2008