Intelligent Systems (2II40) C3 Alexandra I. Cristea September 2005.

Slides:



Advertisements
Similar presentations
Notes Dijstra’s Algorithm Corrected syllabus.
Advertisements

Informed search algorithms
An Introduction to Artificial Intelligence
Solving Problem by Searching
1 Heuristic Search Chapter 4. 2 Outline Heuristic function Greedy Best-first search Admissible heuristic and A* Properties of A* Algorithm IDA*
EIE426-AICV 1 Blind and Informed Search Methods Filename: eie426-search-methods-0809.ppt.
Search Strategies CPS4801. Uninformed Search Strategies Uninformed search strategies use only the information available in the problem definition Breadth-first.
CS 380: Artificial Intelligence Lecture #3 William Regli.
Problem Solving by Searching
Informed search.
Review: Search problem formulation
Artificial Intelligence
Cooperating Intelligent Systems Informed search Chapter 4, AIMA.
Informed Search Methods How can we make use of other knowledge about the problem to improve searching strategy? Map example: Heuristic: Expand those nodes.
Problem Solving and Search in AI Heuristic Search
CSC344: AI for Games Lecture 4: Informed search
Rutgers CS440, Fall 2003 Heuristic search Reading: AIMA 2 nd ed., Ch
Vilalta&Eick: Informed Search Informed Search and Exploration Search Strategies Heuristic Functions Local Search Algorithms Vilalta&Eick: Informed Search.
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
Intelligent Systems (2II40) C2 Alexandra I. Cristea September 2005.
Informed search algorithms
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search.
Informed search algorithms
2013/10/17 Informed search A* algorithm. Outline 2 Informed = use problem-specific knowledge Which search strategies? Best-first search and its variants.
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics.
CHAPTER 4: INFORMED SEARCH & EXPLORATION Prepared by: Ece UYKUR.
1 Shanghai Jiao Tong University Informed Search and Exploration.
Informed search algorithms Chapter 4. Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most.
CS 380: Artificial Intelligence Lecture #4 William Regli.
Informed searching. Informed search Blind search algorithms do not consider any information about the states and the goals Often there is extra knowledge.
Informed Search Methods. Informed Search  Uninformed searches  easy  but very inefficient in most cases of huge search tree  Informed searches  uses.
Chapter 4 Informed/Heuristic Search
Princess Nora University Artificial Intelligence Chapter (4) Informed search algorithms 1.
CSC3203: AI for Games Informed search (1) Patrick Olivier
Informed Search I (Beginning of AIMA Chapter 4.1)
Artificial Intelligence Problem solving by searching.
1 Kuliah 4 : Informed Search. 2 Outline Best-First Search Greedy Search A* Search.
Search (continued) CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
Informed Search and Heuristics Chapter 3.5~7. Outline Best-first search Greedy best-first search A * search Heuristics.
4/11/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 4, 4/11/2005 University of Washington, Department of Electrical Engineering Spring 2005.
A General Introduction to Artificial Intelligence.
Feng Zhiyong Tianjin University Fall  Best-first search  Greedy best-first search  A * search  Heuristics  Local search algorithms  Hill-climbing.
Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most desirable unexpanded node Implementation:
Pengantar Kecerdasan Buatan 4 - Informed Search and Exploration AIMA Ch. 3.5 – 3.6.
Informed Search II CIS 391 Fall CIS Intro to AI 2 Outline PART I  Informed = use problem-specific knowledge  Best-first search and its variants.
Heuristic Search Foundations of Artificial Intelligence.
3.5 Informed (Heuristic) Searches This section show how an informed search strategy can find solution more efficiently than uninformed strategy. Best-first.
Chapter 3.5 and 3.6 Heuristic Search Continued. Review:Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 5 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Romania. Romania Problem Initial state: Arad Goal state: Bucharest Operators: From any node, you can visit any connected node. Operator cost, the.
Chapter 3 Solving problems by searching. Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known.
Chapter 3.5 Heuristic Search. Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
Lecture 3: Uninformed Search
Informed Search Methods
Last time: Problem-Solving
Artificial Intelligence (CS 370D)
HW #1 Due 29/9/2008 Write Java Applet to solve Goats and Cabbage “Missionaries and cannibals” problem with the following search algorithms: Breadth first.
CSE 4705 Artificial Intelligence
Solving problems by searching
CS 4100 Artificial Intelligence
Artificial Intelligence Informed Search Algorithms
EA C461 – Artificial Intelligence
COMP 8620 Advanced Topics in AI
Informed search algorithms
Informed search algorithms
Artificial Intelligence
HW 1: Warmup Missionaries and Cannibals
HW 1: Warmup Missionaries and Cannibals
Artificial Intelligence
Solving Problems by Searching
Presentation transcript:

Intelligent Systems (2II40) C3 Alexandra I. Cristea September 2005

Outline II.Intelligent agents III.Search 1.Uninformed 2.Informed A.Heuristic B.Local C.Online

Iterative deepening search Depth first search with growing depth l l = allowed maximal depth in tree

Iterative deepening search example Arad l = 0

Iterative deepening search example Arad l = 1

Iterative deepening search example l = 1 Arad ZerindSibiuTimisoara

Iterative deepening search example Arad l = 2

Iterative deepening search example l = 2 Arad ZerindSibiuTimisoara

Iterative deepening search example l = 2 AradOradea Arad ZerindSibiuTimisoara

Iterative deepening search example l = 2 Arad SibiuTimisoara OradeaFagarash Ramnicu Valcea

Iterative deepening search example l = 2 Arad Timisoara AradLugoj

Proprieties of iterative deepening search Complete?Complete? Yes (b,d finite) Time?Time? (d+1) + db + (d-1)b 2 + …+ b d = O(b d ) Space?Space? O(bd) Optimal?Optimal? Yes (b,d finite & cost/step=1)

Outline II.Intelligent agents III.Search 1.Uninformed 2.Informed A.Heuristic B.Local C.Online

Uniform cost search Expand least cost node first Implementation: increasing cost order queue   = min(cost/step): the smallest step cost

Ex: Romania w. step costs (km)

Uniform cost example Arad

Uniform cost example Arad ZerindSibiuTimisoara

Uniform cost example Arad Sibiu AradOradea Zerind 75+75= = 146 Timisoara AradLugoj = 229

Uniform cost example Arad Sibiu AradOradea Zerind Timisoara AradLugoj AradOradea Ramnicu Valcea Fagarash

Uniform cost example Arad Sibiu AradOradea Zerind Timisoara AradLugoj AradOradea Ramnicu Valcea Fagarash Zerind Sibiu

Uniform cost example Arad Sibiu AradOradea Zerind Timisoara AradLugoj AradOradea Ramnicu Valcea Fagarash Zerind Sibiu

Uniform cost example Arad Sibiu AradOradea Zerind Timisoara AradLugoj AradOradea Ramnicu Valcea Fagarash Zerind Sibiu SibiuPitestiCraiova

Uniform cost example Arad Sibiu AradOradea Zerind Timisoara AradLugoj AradOradea Ramnicu Valcea Fagarash Zerind Sibiu SibiuPitestiCraiova

Properties of uniform cost search Complete?Complete? Yes (b,d finite & cost/step   ) Optimal?Optimal? Yes (b,d finite & cost/step   ) Time?Time? O(b C*/  ) ( C* : cost optimal solution) Space?Space? O(b C*/  )

III.2. Informed search algorithms

III.2. Informed Search Strategies A. Heuristic –Best-first search Greedy search A* search B. Local –Hill climbing –Simulated annealing –Genetic algorithms

Best first search f(n)f(n) : evaluation function: –desirability of n Implementation: –queue of decreasing desirability

Greedy search f(n) = h(n)f(n) = h(n), h(n): heuristic : distance from n to goal expands n closest to goal admissibleImportant: heuristic should be admissible: –h(n)  h*(n), with: –h*(n)= real cost from n to goal

Example Greedy search Map of Romania possible heuristic : h sld (n) = straight_line_distance (n, Bucharest)

Greedy search example Arad 366

Greedy search example 366 Arad ZerindTimisoara Sibiu

Greedy search example 366 Arad ZerindTimisoara Arad Sibiu Oradea Ramnicu Valcea Fagarash 374

Greedy search example 366 Arad ZerindTimisoara Arad Sibiu Oradea Ramnicu Valcea Fagarash SibiuBucharest

Properties of Greedy search Complete?Complete? No (could get stuck in loops) Optimal?Optimal? No Time?Time? O(b m ) Space?Space? O(b m )

Homework 3 – part 1 1.Check Dijkstra’s Greedy algorithm and shortly compare! 2.Give 3 recent applications of a (modified) Greedy algorithm. Explain in what consists the application, evtl. the modification, and give your source.

A* search f(n) = g(n) + h(n)f(n) = g(n) + h(n): –g(n) –g(n): real (!!) cost from start to n –h(n) –h(n): heuristic: distance from n to goal NOTE: –considers the whole cost incurred from start to goal at all times !!

A* search example Arad 366

A* search example 366 Arad ZerindTimisoara = Sibiu

A* search example 366 Arad ZerindTimisoara Arad Sibiu Oradea Ramnicu Valcea Fagarash

A* search example 366 Arad ZerindTimisoara Arad Sibiu Oradea Ramnicu Valcea Fagarash SibiuCraiovaPitesti

A* search example 366 Arad ZerindTimisoara Arad Sibiu Oradea Ramnicu Valcea Fagarash SibiuCraiovaPitesti Rm.VilceaCraiova Bucharest

A* search example 366 Arad ZerindTimisoara Arad Sibiu Oradea Ramnicu Valcea Fagarash Sibiu Bucharest SibiuCraiovaPitesti Rm.VilceaCraiova Bucharest

Properties of A* search Complete?Complete? Yes (if # nodes w. f  C* finite) Optimal?Optimal? Yes; optimally efficient!! Time?Time? O (b (rel. err. in h) x (length of solution) ) Space?Space? All nodes in memory

Optimality A* Be G optimal goal state (path cost f*) Be G2 suboptimal goal state (local minimum) f(G2) = g(G2) (heuristic zero in goal state) f(G2) > f* (G2 suboptimal) n fringe node on optimal path to G h is admissible : f(n) = g(n) + h(n)  g(n) + h*(n) = f*. f(n)  f*< f(G2) n will be chosen instead of G2, q.e.d.

Improved A* alg. IDA* = A* + iterative deepening depending on f RBFS = recursive depth first search + remembering value of best ancestor; space=O(bd) MA* = memory bound A* (use of available memo only) SMA* = simple MA* (A*; if memo full, discard worst node, but store f value of children w. parents)

Summary (un-)informed search Uninformed – ‘blind’ –computationally cheaper (heuristic?) Research continues on finding better search –i.e., problem solving algorithms Informed + uninformed: –global search algorithms –exponential time+space ( molecules in universe)

Homework 3 - part 2 3. Read the LAO* paper find the different notations used by the author for the properties of the search algorithm and make a table of equivalences; Describe LAO* in terms of these properties; comment upon dimensions of AI (as in C1) that you find in the LAO* algorithm.LAO* paper

II.2.B. Local Search Greedy local search (hill-climbing) Simulated annealing Genetic algorithms

Homework 3 – part 2 7.Perform steps FAQ 5-6 of the project.