radius = r Trigonometric Values of an Angle in Standard Position 90º

Slides:



Advertisements
Similar presentations
13.3 Trig functions of general angles
Advertisements

Identify a unit circle and describe its relationship to real numbers
10 Trigonometry (1) Contents 10.1 Basic Terminology of Trigonometry
Lesson 12.2.
Day 2 and Day 3 notes. 1.4 Definition of the Trigonometric Functions OBJ:  Evaluate trigonometric expressions involving quadrantal angles OBJ:  Find.
Day 3 Notes. 1.4 Definition of the Trigonometric Functions OBJ:  Evaluate trigonometric expressions involving quadrantal angles OBJ:  Find the angle.
1.5 Using the Definitions of the Trigonometric Functions OBJ: Give the signs of the six trigonometric functions for a given angle OBJ: Identify the quadrant.
Section 5.2 Trigonometric Functions of Real Numbers Objectives: Compute trig functions given the terminal point of a real number. State and apply the reciprocal.
Signs of functions in each quadrant. Page 4 III III IV To determine sign (pos or neg), just pick angle in quadrant and determine sign. Now do Quadrants.
Aim: How do we find the exact values of trig functions? Do Now: Evaluate the following trig ratios a) sin 45  b) sin 60  c) sin 135  HW: p.380 # 34,36,38,42.
Trigonometric Functions of Any Angles
Copyright © Cengage Learning. All rights reserved.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Functions.
TF Angles in Standard Position and Their Trig. Ratios
Trig Functions of Special Angles
5.3 and 5.4 Evaluating Trig Ratios for Angles between 0 and 360
TRIGONOMETRY. Sign for sin , cos  and tan  Quadrant I 0° <  < 90° Quadrant II 90 ° <  < 180° Quadrant III 180° <  < 270° Quadrant IV 270 ° < 
Copyright © Cengage Learning. All rights reserved. 4 Trigonometric Functions.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 6.3 Properties of the Trigonometric Functions.
Trigonometric Functions of Any Angle 4.4. Definitions of Trigonometric Functions of Any Angle Let  is be any angle in standard position, and let P =
Trig Functions of Any Angle Lesson 2.3. Angles Beyond 90°  Expand from the context of angles of a right triangle  Consider a ray from the origin through.
13.3 Evaluating Trigonometric Functions
7-4 Evaluating Trigonometric Functions of Any Angle Evaluate trigonometric functions of any angle Use reference angles to evaluate trigonometric functions.
Using the Cartesian plane, you can find the trigonometric ratios for angles with measures greater than 90 0 or less than 0 0. Angles on the Cartesian.
(a) How to memorize the trigonometric identities? Trigonometric Identities Easy Memory Tips: Quadrant  is acute sin cos tan IIIII IV I sin  -  -  
Mrs. Crespo Definition  Let θ be a non-quadrantal angle in standard position.  The reference angle for θ is the acute angle θ R that the terminal.
Wednesday, Jan 9, Objective 1 Find the reference angle for a given angle A reference angle for an angle is the positive acute angle made by the.
7.3 Trigonometric Functions of Angles. Angle in Standard Position Distance r from ( x, y ) to origin always (+) r ( x, y ) x y  y x.
Section 7.2 The Inverse Trigonometric Functions (Continued)
Lesson 4.4 Trigonometric Functions of Any Angle. Let  be an angle in standard position with (x, y) a point on the Terminal side of  and Trigonometric.
Trigonometric Functions on the
Trigonometric Functions Let (x, y) be a point other then the origin on the terminal side of an angle  in standard position. The distance from.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 7.4 Trigonometric Functions of General Angles.
DEdwards Square on Hypotenuse Square on Leg 1 Square on Leg 2 = +
Section 13.6a The Unit Circle.
30º 60º 1 45º 1 30º 60º 1 Do Now: Find the lengths of the legs of each triangle.
Chapter 6 – Trigonometric Functions: Right Triangle Approach Trigonometric Functions of Angles.
LESSON 3 – Introducing….The CAST Rule!!!
Chapter 4 Trigonometric Functions Trig Functions of Any Angle Objectives:  Evaluate trigonometric functions of any angle.  Use reference angles.
Warm-Up 8/26 Simplify the each radical expression
Using Fundamental Identities To Find Exact Values. Given certain trigonometric function values, we can find the other basic function values using reference.
4.4 Trigonometric Functions of Any Angle
Properties of the Trigonometric Functions
Section 1.4 Trigonometric Functions an ANY Angle Evaluate trig functions of any angle Use reference angles to evaluate trig functions.
Pre-Calc Book Section 5.2 Trigonometric Functions of Real Numbers
Notes Over 6.3 Evaluating Trigonometric Functions Given a Point Use the given point on the terminal side of an angle θ in standard position. Then evaluate.
MATHPOWER TM 12, WESTERN EDITION Chapter 5 Trigonometric Equations.
Point P(x, y) is the point on the terminal arm of angle ,an angle in standard position, that intersects a circle. P(x, y) x y r  r 2 = x 2 + y 2 r =
© The Visual Classroom x y Day 1: Angles In Standard Position  terminal arm initial arm standard position  initial arm 0 º terminal arm x y non-standard.
Warm-Up 3/ Find the measure of
4.4 Trig Functions of Any Angle Reference Angles Trig functions in any quadrant.
Math 20-1 Chapter 2 Trigonometry
4.4 Trigonometric Functions of Any Angle. Ex.Find the sine, cosine, and tangent of if (-3,4) is a point on the terminal side of. (-3,4) -3 4 ? =5.
Copyright © by Holt, Rinehart and Winston. All Rights Reserved. Objectives Find coterminal and reference angles. Find the trigonometric function values.
Section 7.4 Trigonometric Functions of General Angles Copyright © 2013 Pearson Education, Inc. All rights reserved.
A. Calculate the value of each to 4 decimal places: i)sin 43sin 137sin 223sin 317. ii) cos 25cos 155cos 205cos 335. iii)tan 71tan 109 tan 251tan 289.
Trigonometry Section 7.3 Define the sine and cosine functions Note: The value of the sine and cosine functions depend upon the quadrant in which the terminal.
1 Copyright © Cengage Learning. All rights reserved. 1 Trigonometry.
Trigonometric Ratios of Any Angle
4.4 Day 1 Trigonometric Functions of Any Angle –Use the definitions of trigonometric functions of any angle –Use the signs of the trigonometric functions.
4.4 Trig Functions of Any Angle Objectives: Evaluate trigonometric functions of any angle Use reference angles to evaluate trig functions.
Unit 3 Trigonometry Review Radian Measure Special Angles Unit Circle 1.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE
5.2 Understanding Angles terminal arm q initial arm standard position
Day 1: Angles In Standard Position
Properties of Trig Fcts.
Find the exact values of the trigonometric functions {image} and {image}
Trigonometric Functions of Any Angle
Solving Trigonometric Equations by Algebraic Methods
Presentation transcript:

radius = r Trigonometric Values of an Angle in Standard Position 90º 30º 45º 60º 90º 120º 135º 150º 180º Quadrant II Quadrant I 0º 210º 225º 240º 270º 300º 315º 330º Quadrant III Quadrant IV radius = r

An angle , in standard position is shown below An angle , in standard position is shown below. Let P (x, y) be any point on the terminal arm of any angle , in standard position. y P( x, y )  x r x

Example 1: Point P(4, 3) lies on the terminal arm of angle q. y P( 4, 3) q 4 3 5 Determine the sin, cos and tan of angle q and the measure of the principal angle. x = 4, y = 3 x r = 5 = 37º

Example 2: Point P(– 4, 3) lies on the terminal arm of angle q. y Determine the sin, cos and tan of angle q and the measure of the principal angle. P(– 4, 3) 5 q 3 x = 4, y = 3 – 4 x r = 5 = 37º q = 180 – 37º

Example 3: Point P(– 4, – 3) lies on the terminal arm of angle q. y q – 4 – 3 5 Determine the sin, cos and tan of angle q and the measure of the principal angle. x = – 4, y = – 3 x r = 5 P(– 4, – 3) = 37º = 180 + 37º = 217º

Example 4: Point P( 4, –3) lies on the terminal arm of angle q. y q 4 – 3 5 Determine the sin, cos and tan of angle q and the measure of the principal angle. x x = – 4, y = 3 r = 5 P(– 4, –3) = 37º q = 360º – 37º = 323º

Summarize what you have learned in the table below. Quadrant for  Sign of x y sin  cos  tan  I II III IV

Summarize what you have learned in the table below. Quadrant for  Sign of x y sin  cos  tan  I + II – III IV

Determine the value of q if sin q = 0 < q < 360º y Example 5: Determine the value of q if sin q = 0 < q < 360º y sin q = 0.5 2 2 q1 = 30º 1 1 x q2 = 180º – 30º q2 = 150º

Example 6: Point P(– 6, –2) lies on the terminal arm of angle q. y Determine the sin, cos and tan of angle q and the measure of the principal angle. q – 6 x = – 6, y = –2 x –2 P(–6,–2) = 18º q = 180 + 18º = 198º

CAST Rule All positive Sine positive Tan positive Cosine positive Positive Values 90º 120º Sine positive All positive 60º 135º (180 - ) 45º  150º 30º 180º 0º 360º 210º (180 + ) 330º (360 - ) 225º Tan positive 315º Cosine positive 240º 270º 300º CAST Rule