1 Bell: There is an ancient invention still used in some parts of the world today that allows people to see through walls. What is it? 1 Windows False.

Slides:



Advertisements
Similar presentations
The Evolution of Populations
Advertisements

Lecture #10 Date ________
EVOLUTION OF POPULATIONS
THE EVOLUTION OF POPULATIONS.
Chapter 23: The Evolution of Populations
Evolution of Populations
THE EVOLUTION OF POPULATIONS
Study of Microevolution
Chapter 18 Chapter 18 The Evolution of Populations.
Chapter 23: The Evolution of Populations
Evolution of Populations
Chapter 23~ Microevolution- small changes in the genetics of populations.
Mechanisms of Evolution Concept 4: Analyzing the evolution of populations through Hardy-Weinberg (microevolution) Chapter 23 in Campbell, pg in.
Chapter 23~ Chapter 23~ The Evolution of Populations.
Lecture Evolution Chapter 19~ Evolutionary change in Populations.
The Evolution of Populations Once you understand Genetics… it all makes sense!
Chapter 23 Chapter 23. Population genetics Population: a localized group of individuals belonging to the same species Population: a localized group of.
Chapter 23 The Evolution of Populations. Question? u Is the unit of evolution the individual or the population?
Chapter 23 The Evolution of Populations. Population Genetics u The study of genetic variation in populations. u Represents the reconciliation of Mendelism.
Lecture #10 Chapter 23~ The Evolution of Populations.
CH. 22/23 WARM-UP 1.List 5 different pieces of evidence for evolution. 2.(Review) What are the 3 ways that sexual reproduction produces genetic diversity?
The Evolution of Populations.  Emphasizes the extensive genetic variation within populations and recognizes the importance of quantitative characteristics.
Chapter 23: The Evolution of Populations. Question?  Is the unit of evolution the individual or the population?  Answer – while evolution effects individuals,
Chapter 23 Notes The Evolution of Populations. Concept 23.1 Darwin and Mendel were contemporaries of the 19 th century - at the time both were unappreciated.
Chapter 23: The Evolution of Populations. MAIN IDEAS OF CHAPTER 23  WHAT IS POPULATION GENETICS  CAUSES OF MICROEVOLUTION  HOW GENETIC VARIATION IN.
Evolution of Populations. DO NOW Is evolution random or non-random? Be prepared to discuss.
The Evolution of Populations. Population genetics Population: –a localized group of individuals belonging to the same species Species: –a group of populations.
MECHANISMS FOR EVOLUTION CHAPTER 23. Objectives Objectives –State the Hardy-Weinburg theorem –Write the Hardy-Weinburg equation and be able to use it.
Chapter 23-Microevolution. Population genetics Population: a localized group of individuals belonging to the same species Species: a group of populations.
MECHANISMS FOR EVOLUTION CHAPTER 20. Objectives – State the Hardy-Weinburg theorem – Write the Hardy-Weinburg equation and be able to use it to calculate.
Mechanisms for Genetic Variation. Population A localized group of individuals of the same species.
The Evolution of Populations Chapter 21. Microevolution Evolutionary changes within a population  Changes in allele frequencies in a population over.
Chapter 23 ~ Evolution of Populations. Population genetics Population: group of individuals belonging to the same species in same area Species: organisms.
CH. 22/23 WARM-UP 1.What is the evidence for evolution?
Mechanisms of Evolution & their Effects on Populations.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Chapter 23 The Evolution of Populations.
EVOLUTION & SPECIATION. Microevolution. What is it? changes in the gene pool of a population over time which result in relatively small changes to the.
Chapter 23 – The Evolution of Populations
 Chapter 23~ The Evolution of Populations. Population genetics provides foundation for studying evolution  Microevolution –Evolutionary change on the.
Population Genetics The Study of how Populations change over time.
Evolution of Populations. The Smallest Unit of Evolution Natural selection acts on individuals, but only populations evolve – Genetic variations contribute.
HARDY-WEINBERG THEOREM Chapter 23: Population Genetics.
Chap 23 Evolution of Populations Genotype p2p2 AA 2pqAa q2q2 aa Phenotype Dominantp 2 + 2pq Recessiveq2q2 Gene pA qa p + q = 1 p 2 + 2pq + q 2 = 1.
Objective: Chapter 23. Population geneticists measure polymorphisms in a population by determining the amount of heterozygosity at the gene and molecular.
AP Biology Lecture #42 Population Genetics The Evolution of Populations.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Populations are the units of evolution Figure 13.6.
Lecture #10Date ________ Chapter 23~ The Evolution of Populations.
Evolution of Populations. Individual organisms do not evolve. This is a misconception. While natural selection acts on individuals, evolution is only.
Evolution of Populations
Chapter 23 The Evolution of Populations. Modern evolutionary theory is a synthesis of Darwinian selection and Mendelian inheritance Evolution happens.
EVOLUTION Descent with Modification. How are these pictures examples of Evolution?
Chap. 23 – Population Evolution. How do Populations evolve? Before Drought After Drought Some characteristics become: More/Less common within the.
Chapter 16.
Evolution of Populations
The Evolution of Populations: Models of Change
Chapter 23 The Evolution of Populations
MECHANISMS FOR EVOLUTION
The Evolution of Populations
Diversity of Individuals and Evolution of Populations
AP Biology Chapter 23 The Evolution of Populations.
Lecture #30: POPULATION & EVOLUTION
The Evolution of Populations
HARDY WEINBERG CRITERIA & POPULATION EVOLUTION
Evolution of Populations: H-W
CHAPTER 13 How Populations Evolve
Chapter 23 – The Evolution of Populations
Vocabulary A species is a group of individuals with the potential to interbreed to produce fertile offspring. A population is a localized group of individuals.
The Evolution of Populations
Purposeful Population Genetics
Lecture #10 Date ________
Presentation transcript:

1 Bell: There is an ancient invention still used in some parts of the world today that allows people to see through walls. What is it? 1 Windows False Assumption: Walls are totally opaque Walls are not part of a house Somehow, windows weren’t “invented” Windows aren’t that ancient

2 Story 2 Two train tracks run parallel to each other, except for a short distance where they meet and become one track over a narrow bridge. One morning, one train speeds onto the bridge. Another train speeds onto the bridge from the other direction. Neither train comes to a stop on the short bridge, yet there is no collision. How is this possible? 2

3 Answer: the trains are traveling at different times of the morning. False assumption: The trains were arriving at the same time. Any assumptions in Butterfly Lab Why are knowing about assumptions Important? 3

4 Chapter 23~ The Evolution of Populations

5 Population genetics Population: –the same species in a specific area Species: –individuals have the potential to interbreed and produce fertile offspring Gene pool: –the total aggregate of genes in a population at any one time Population genetics: –the study of genetic changes in populations “Individuals are selected, but populations evolve.”

6 Hardy-Weinberg Theorem Serves as a model for the genetic structure of a non- evolving population (equilibrium) Gene Pool - Frequency of alleles 5 conditions: 1- Very large population size; 2- No migration; 3- No net mutations; 4- Random mating; 5- No natural selection

7 Hardy-Weinberg Equation p=frequency of one allele (A) q=frequency of the other allele (a) p+q=1.0 (p=1-q & q= 1- p) P2=frequency of AA genotype 2pq=frequency of Aa plus aA genotype q2=frequency of aa genotype p2 + 2pq + q2 = 1.0

8 Microevolution, I A change in the gene pool of a population over a succession of generations 1- Genetic drift: changes in the gene pool of a small population due to chance (usually reduces genetic variability)

9 Genetic Drift The Bottleneck Effect: –type of genetic drift resulting from a reduction in population –(natural disaster) such that the surviving population is no longer genetically representative of the original population

10 Genetic Drift Founder Effect: –a cause of genetic drift attributable to colonization by a limited number of individuals from a parent population

11 Microevolution, IV 2- Gene Flow: genetic exchange due to the migration of fertile individuals or gametes between populations (reduces differences between populations)

12 Microevolution, V 3- Mutations: a change in an organism’s DNA –(gametes; many generations); –original source of genetic variation –(raw material for natural selection)

13 4- Sexual Recombination –Creates a variety of different combinations of genes Microevolution, VI

14 Microevolution, VIII 5- Nonrandom mating: –inbreeding and assortive mating –(both shift frequencies of different genotypes)

15 Microevolution, IX 6- Natural Selection: differential success in reproduction; only form of microevolution that adapts a population to its environment

16 Population variation Polymorphism: coexistence of 2 or more distinct forms of individuals (morphs) within the same population Geographical variation: differences in genetic structure between populations (cline)

17 Variation preservation Prevention of natural selection’s reduction of variation Diploidy - (sexual Recombination) –2nd set of chromosomes hides variation in the heterozygote Balanced polymorphism –1- heterozygote advantage (hybrid vigor; i.e., malaria/sickle- cell anemia); –2- frequency dependent selection (survival & reproduction of any 1 morph declines if it becomes too common; i.e., parasite/host) (relationship dependent)

18 Natural selection Fitness: contribution an individual makes to the gene pool of the next generation 3 types: A. Directional (moths) B. Diversifying (favors extremes) C. Stabilizing (favors intermediate)

19 Sexual selection Sexual dimorphism: secondary sex characteristic distinction Sexual selection: selection towards secondary sex characteristics that leads to sexual dimorphism

20 Natural Selection  Perfect Historical Constraints Adaptations are compromises Chance Edit existing variations