Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov.

Slides:



Advertisements
Similar presentations
Accelerator Physics, JU, First Semester, (Saed Dababneh).
Advertisements

(not visible on the picture)
1 Tritium-Containing Targets for Neutron Generators STCU Workshop "From Science to Business" 11 – 12 October 2006, Kyiv Mykola Kolomiyets
H-mode characterization for dominant ECR heating and comparison to dominant NBI or ICR heating F. Sommer PhD thesis advisor: Dr. Jörg Stober Academic advisor:
Superconducting Ion Source Development in Berkeley
Pascal Sortais – LPSC/SSI - SFP Porquerolles Institut of Nuclear Physics (INS) Institut des Sciences Nucléaires (ISN) Cosmology and Subatomic Physic.
W. Udo Schröder, 2004 Instrumentation 1. W. Udo Schröder, 2004 Instrumentation 2 Probes for Nuclear Processes To “see” an object, the wavelength of the.
Ion Injector Design Andrew Seltzman.
Nuclear Physics Year 13 Option 2006 Part 2 – Nuclear Fusion.
Study of D-D Reaction at the Plasma Focus Device P. Kubes, J. Kravarik, D. Klir, K. Rezac, E. Litseva, M. Scholz, M. Paduch, K. Tomaszewski, I. Ivanova-Stanik,
Design on Target and Moderator of X- band Compact Electron Linac Neutron Source for Short Pulsed Neutrons Kazuhiro Tagi.
ECE/ChE 4752: Microelectronics Processing Laboratory
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Mass Spectrometry Brief introduction (part1) I. Sivacekflerovlab.jinr.ru 2012 Student Practice in JINR Fields of Research 1.oct.2012.
Martin Freer Materials Irradiation at University of Birmingham.
By Ahmad Idris Ahmad. ◦. I believe that cheap clean source of energy can be harnessed through nuclear fusion if the conditions of the reactions are mastered.
FFAG-ERIT R&D 06/11/06 Kota Okabe (Kyoto Univ.) for FFAG-DDS group.
FFAG-ERIT Accelerator (NEDO project) 17/04/07 Kota Okabe (Fukui Univ.) for FFAG-DDS group.
December 2007ESF-Workshop, Athens, Greece University of Jyväskylä, Department of Physics ECR ion source for the highly charged, intensive ion beams H.
Industrial Applications of ECR-Based Neutron Generators
New Progress of High Current Gasdynamic Ion Source
Vacuum Spark Ion Source: High Charge States Ion Beam E.M. Oks, G.Yu. Yushkov, A.G. Nikolaev, and V.P. Frolova High Current Electronics Institute, Siberian.
Negative Ions in IEC Devices David R. Boris 2009 US-Japan IEC Workshop 12 th October, 2009 This work performed at The University of Wisconsin Fusion Technology.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Design of FFAG-ERIT 05/12/07 Kota Okabe (KEK) for FFAG-DDS group.
Limitation of the ECRIS performance by kinetic plasma instabilities O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University.
VNIIA neutron generators for thermonuclear research
1 Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies Qing Ji a, Peter Seidl a, Will Waldron a, Jeff.
VUV-diagnostics of inelastic collision processes in low temperature hydrogen plasmas J. Komppula & JYFL ion source group University of Jyväskylä Department.
Mats Lindroos Future R&D: beta-beam Mats Lindroos.
Use of the focusing multi-slit ion optical system at the diagnostic injector RUDI A.Listopad 1, J.Coenen 2, V.Davydenko 1, A.Ivanov 1, V.Mishagin 1, V.Savkin.
N. Gubanova 1, V. Kanygin 2, A. Kichigin 3, S. Taskaev 4 1 Institute of Cytology and Genetics, Novosibirsk, Russia 2 Novosibirsk State Medical University,
VIEW on RAD HARDNESS TESTS of STS FEE IN MEPHI. Simakov A.B. – Head of “Special Microelectronics” Lab.
Status of the Source of Polarized Ions project for the JINR accelerator complex (June 2013) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev.
Adelphi technology inc. Experiments and simulations using a high flux DD neutron generator 1 J. H. Vainionpaa 1, A. X. Chen 1, M. A. Piestrup 1, C. K.
X-ray absorption spectroscopy (XAS)
Effect of Helical Magnetic Field Ripples on Energetic Particle Confinement in LHD Plasmas T.Saida, M.Sasao, M.Isobe 1, M.Nishiura 1, S.Murakami 2, K.Matsuoka.
Investigating the Feasibility of a Small Scale Transmuter – Part II Roger Sit NCHPS Meeting March 4-5, 2010.
Pekka Suominen 2010 CERN Plasma ion sources for radioactive molecular ion beams.
Source of Polarized Ions for the JINR accelerator complex (September 2015) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev, V.B. Shutov.
1 Nuclear Fusion Class : Nuclear Physics K.-U.Choi.
Neutron exposure at CERN Mitsu KIMURA 19 th July 2013.
A.Yu. Chirkov1), S.V. Ryzhkov1), P.A. Bagryansky2), A.V. Anikeev2)
The Polarized Internal Gas Target of ANKE at COSY
Karolina Danuta Pągowska
Large Area Plasma Processing System (LAPPS) R. F. Fernsler, W. M. Manheimer, R. A. Meger, D. P. Murphy, D. Leonhardt, R. E. Pechacek, S. G. Walton and.
Vladimir ZORIN Institute of Applied Physics Nizhny Novgorod, Russia Additional Partner in EUROnu project ECR task: continuation of work with a 60 GHz ECR.
The International Workshop on Thin Films. Padova 9-12 Oct of slides Present Status of the World- wide Fusion Programme and possible applications.
Accelerators and Sources Report from Discussion Session Jose Alonso 1.
Lecture 28 Nuclear Energy Chapter 30.1  30.3 Outline Controlled Fission Reaction Fusion in Stars.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 102 nd Session, September 2007, Dubna.
Recent progress of RIKEN 28GHz SC-ECRIS for RIBF T. Nakagawa (RIKEN) 1.Introduction RIKEN Radio isotope factory project 2.RIKEN 28GHz SC-ECRIS Structure(Sc-coils,
Development and applications of submillimeter wave gyrotron FU series
Understanding Extraction And Beam Transport In The ISIS H - Ion Source D. C. Faircloth, A.P Letchford, C. Gabor, S. Lawrie M. O. Whitehead and T. Wood.
January 30, 2007 CERN Resonant laser ion sources By V. Fedosseev.
Research and Practical Conference “Accelerators and Radiation technologies for the Futures of Russia” September 2012, Saint-Petersburg Neutron Sources.
Yeong-Shin Park and Y. S. Hwang
Seok-geun Lee, Young-hwa An, Y.S. Hwang
60 GHz ECR Ion Source for RIB production
Injector Cyclotron for a Medical FFAG
Machine studies during beam commissioning
Emanuele (ESS), Alessandro (CERN), Mikel (Tekniker), Hayley (ISIS)
Investigation into the gas mixing effect in ECRIS
Single-frequency operation mode Double-frequency operation mode
Future R&D: beta-beam Mats Lindroos Mats Lindroos.
FEBIAD ion source development efficiency improvement
Data improvements Request for Isotope Production at the Missouri University Research Reactor Facility Need gamma production spectrum for incident neutron.
ADS Accelerator Program in China
The GDT device at the Budker Institute of Nuclear Physics is an experimental facility for studies on the main issues of development of fusion systems based.
He Zhang, David Douglas, Yuhong Zhang MEIC R&D Meeting, 09/04/2014
Presentation transcript:

Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov 1, S.V. Razin 1, O. Tarvainen 2, H. Koivisto 2, T. Kalvas 2 m 1 Institute of Applied Physics, RAS, 46 Ul`yanova st., Nizhny Novgorod, Russia 2 University of Jyvaskyla, Department of Physics, P.O. Box 35 (YFL), Jyväskylä, Finland

Nizhny Novgorod

Outline Neutron generators High current ECR ion sources SMIS 37 ion source D+ beam production at SMIS 37 Neutron production at SMIS 37 Perspectives and plans

Neutron sources for BNCT Nuclear reactors – High neutron flux – High running cost and complexity Accelerators – Satisfactory neutron flux – Lower cost – Safety Neutron generators – Low neutron flux – Small size, low cost – Easy to use

“Low” energy D+ ion beams: » D + D --> 3 He3 + n 3.26 MeV » D + T --> 4 He3 + n 17.6 MeV D-D and D-T neutron generators Targets: TiD 2, ZrD 2, ScD 2 Up to 1,8 D atoms per one sorbent atom

Ion sources for neutron generators Penning source RF-driven plasma ion sources ERC ions sources – 2,45 GHz ECR plasma density cm -3 Plasma flux density < 100 mA/cm 2 – 37,5 GHz ECR plasma density >10 13 cm -3 Plasma flux density > 1000 mA/cm 2

Faraday cup Gyrotron 37 GHz, kW, 1ms/1Hz. Gasdynamic plasma confinement High plasma density >2*10 13 cm -3 High collision rate -> Low plasma lifetime ~ tens of  s Plasma flux at the mirror point >10 A/cm 2 T e ~ eV -> close to 100% ionization T i ~ 1-5 eV + extraction in the area of low magnetic field -> excellent emittance SMIS 37

Beam extraction Plasma electrode aperture diameter from 5 to 10 mm

Beam current measurements

Ion spectrum (Hydrogen, Deuterium) H +, D +  94 % H 2 +, D 2 + < 6 %

Beam extraction summary H +, D +  94 % H 2 +, D 2 + < 6 %

Ice target (D 2 O)

TiD 2 target Secondary-Ion Mass Spectrometry (SIMS) of the target 1 cm Depth, a.u. Signal, a.u.

Neutron flux measurements Two 3 He proportional counters were used in experiments 250 mA

Results (45 keV beam energy) TargetNeutron flux per 1 mА of D+ beam at 45 keV Total neutron flux (300 mA of D+) TiD 2 2·10 6 6·10 8 D2OD2O3·

Estimations 10 8 Neutrons per second for 1 mА D + at beam energy keV Beam current: 500 – 1000 mА Expected neutron flux: 5·10 10 – 1·10 11 s -1 (5·10 12 – 1·10 13 s -1 T-target) Expected neutron flux density: > s -1 ·cm -2

D + beam at 100 keV High quality target Bigger target CW D+ beam production (24 GHz, 10 kW) Design of target cooling Future plans

Many thanks for your attention!