A. Montuori 1, M. Portabella 2, S. Guimbard 2, C. Gabarrò 2, M. Migliaccio 1 1 Dipartimento per le Tecnologie (DiT), University of Naples Parthenope, Italy.

Slides:



Advertisements
Similar presentations
Analysis of AMSR-E C & X-band Tb data dependencies with wind & wave characteristics.
Advertisements

OSE meeting GODAE, Toulouse 4-5 June 2009 Interest of assimilating future Sea Surface Salinity measurements.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity Using TEC estimated from Stokes 3 24 October 2012 ACRI-st, LOCEAN & ARGANS SMOS+polarimetry.
SMOS Ocean Salinity Retrieval Level 3 Marco Talone, Jérôme Gourrion, Joaquim Ballabrera, Marcos Portabella, and the SMOS Barcelona Expert Centre (SMOS-BEC)
Calibration and Validation Studies for Aquarius Salinity Retrieval Shannon Brown and Sidharth Misra Jet Propulsion Laboratory, California Institute of.
Aquarius Status Salinity Retrieval and Applications D. M. Le Vine NASA/GSFC, Greenbelt, MD E. P. Dinnat, G. Lagerloef, P. de Matthaeis, H. Kao, F.
The Aquarius Salinity Retrieval Algorithm Frank J. Wentz and Thomas Meissner, Remote Sensing Systems Gary S. Lagerloef, Earth and Space Research David.
MIRAS performance based on OS data SMOS MIRAS IOP 6 th Review, ESAC – 17 June 2013 Prepared by: J. Font, SMOS Co-Lead Investigator, Ocean Salinity – ICM-CSIC.
AGU 2004 Fall Meeting, May 19, 2015Slide 1 Jointly Retrieving Surface Soil Moisture from Active and Passive Microwave Observations using Cubist Data-Mining.
Sea water dielectric constant, temperature and remote sensing of Sea Surface Salinity E. P. Dinnat 1,2, D. M. Le Vine 1, J. Boutin 3, X. Yin 3, 1 Cryospheric.
SMOS – The Science Perspective Matthias Drusch Hamburg, Germany 30/10/2009.
Abstract In the case of the application of the Soil Moisture and Ocean Salinity (SMOS) mission to the field of hydrology, the question asked is the following:
CONCLUSION - The impact of the fringe wash effects on the radiometric sensitivity as well as on the spatial resolution of the SMOS instrument has been.
Ifremer Planning of Cal/Val Activities during In orbit commisioning Phase N. Reul, J. Tenerelli, S. Brachet, F. Paul & F. Gaillard, ESL & GLOSCAL teams.
SMOS Validation Rehearsal Campaign Workshop, 18-19/11/2008, Noordwijkerhout, The Netherlands SMOS Validation Rehearsal Campaign Mediterranean flights C.
Galactic noise model adjustment Jean-Luc Vergely (ACRI-ST) Jacqueline Boutin (LOCEAN) Xiaobin Yin (LOCEAN)
MWR Roughness Correction Algorithm for the Aquarius SSS Retrieval W. Linwood Jones, Yazan Hejazin, Salem Al-Nimri Central Florida Remote Sensing Lab University.
SMOS STORM KO meeting 30/01/2012 ESRIN Ocean Surface Remote Sensing at High Winds with SMOS.
SMOS Science Workshop, Arles, th Sept, 2011 IMPROVING SMOS SALINITY RETRIEVAL: SYSTEMATIC ERROR DIAGNOSTIC J. Gourrion, R. Sabia, M. Portabella,
SMOS QWG-5, 30 May- 1 June 2011, ESRIN Ocean Salinity 1 1.Commissioning reprocessing analysis 2.New processor version: improvements and problems detected/solved.
Progress Meeting #27, April 2015, Barcelona SPAIN T3.2 Retrieval algorithm Estrella Olmedo BEC team SMOS Barcelona Expert Centre Pg. Marítim de la.
Collaborative Research: Toward reanalysis of the Arctic Climate System—sea ice and ocean reconstruction with data assimilation Synthesis of Arctic System.
Aquarius Algorithm Workshop March 2007 College of Engineering Department of Atmospheric, Oceanic & Space Sciences Chris Ruf Space Physics Research.
SMOS+ STORM Evolution Kick-off Meeting, 2 April 2014 SOLab work description Zabolotskikh E., Kudryavtsev V.
Welcome to ICM !. 4 departments Marine Biology and Oceanography Marine Geology Physical Oceanography Renewable Marine Resources 84 members 44 members.
Calibration and Validation Studies for Aquarius Salinity Retrieval PI: Shannon Brown Co-Is: Shailen Desai and Anthony Scodary Jet Propulsion Laboratory,
SMOS L2 Ocean Salinity Level 2 Ocean Salinity PM # May 2011 ARGANS & L2OS CLS.
Agency, version?, Date 2012 Coordination Group for Meteorological Satellites - CGMS Add CGMS agency logo here (in the slide master) Coordination Group.
APPLICATIONS OF THE INTEGRAL EQUATION MODEL IN MICROWAVE REMOTE SENSING OF LAND SURFACE PARAMETERS In Honor of Prof. Adrian K. Fung Kun-Shan Chen National.
Ocean Salinity validation of mission requirements review / improvements: Points of Reflexion ESL teams Mission Requirements: The so-called GODAE requirements:
A NON-RAINING 1DVAR RETRIEVAL FOR GMI DAVID DUNCAN JCSDA COLLOQUIUM 7/30/15.
Sea surface salinity from space: new tools for the ocean color community Joe Salisbury, Doug Vandemark, Chris Hunt, Janet Campbell, Dominic Wisser, Tim.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity Status 9 February 2015 ARGANS & SMOS L2OS ESL 1.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity L2OS planning 2 July 2014 ARGANS & SMOS L2OS ESL 1.
SMOS AlgoVal meeting #16, Brest, 8-9 July, 2009 Computing Tb BOA and Tb surf C. Gabarró, J. Font SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta.
1 / 13 Current activities at ICM-SMOS-BEC J. Gourrion, C. Gabarró, R. Sabia, M. Talone, V. González, S. Montero, S. Guimbard, F. Pérez, J. Martínez, M.
SPCM-9, Esac, May 3 rd, 2012 MODEL-INDEPENDENT ESTIMATION OF SYSTEMATIC ERRORS IN SMOS BRIGHTNESS TEMPERATURE IMAGES J. Gourrion, S. Guimbard, R. Sabia,
Level 2 Algorithm. Definition of Product Levels LevelDescription Level 1 1A Reconstructed unprocessed instrument data 1B Geolocated, calibrated sensor.
OS-ESL meeting, Barcelona, February nd, 2011 OTT sensitivity study and Sun correction impact J. Gourrion and the SMOS-BEC team SMOS-BEC, ICM/CSIC.
Optimization of L-band sea surface emissivity models deduced from SMOS data X. Yin (1), J. Boutin (1), N. Martin (1), P. Spurgeon (2) (1) LOCEAN, Paris,
Introduction Martin et al. JGR, 2014 CAROLS airborne Tbs indicate slightly lower wind influence than predicted by model 1 at high WS In model 1 previous.
SMOS-BEC – Barcelona (Spain) Revealing Geophysically-Consistent Spatial Structures in SMOS Surface Salinity Derived Maps Marcos Portabella, Estrella Olmedo,
Space Reflecto, November 4 th -5 th 2013, Plouzané Characterization of scattered celestial signals in SMOS observations over the Ocean J. Gourrion 1, J.
2011 IEEE International Geoscience And Remote Sensing Symposium IGARSS’11  July 24-29, 2011  Vancouver, C ANADA A synergy between SMOS & AQUARIUS: resampling.
USING SMOS POLARIMETRIC BRIGHTNESS TEMPERATURES TO CORRECT FOR ROUGH SURFACE EMISSION BEFORE SALINITY INVERSION.
SMOS-BEC – Barcelona (Spain) LO calibration frequency impact Part II C. Gabarró, J. Martínez, V. González, A. Turiel & BEC team SMOS Barcelona Expert Centre.
SMOS-BEC – Barcelona (Spain) Assessment of impact of new ECMWF cycle 38r2 BEC team SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta 37-49, Barcelona.
Design Features of a Boresighted GPM Core Radiometer Christopher S. Ruf Dept. of Atmospheric, Oceanic & Space Sciences University of Michigan, Ann Arbor,
Simulator Wish-List Gary Lagerloef Aquarius Principal Investigator Cal/Val/Algorithm Workshop March GSFC.
ICM/UTM - CSIC Hymex activities Joaquim Ballabrera Jordi Font Jordi Salat Marta Umbert.
SMOS QWG-9, ESRIN October 2012 L2OS: Product performance summary v550 highlights 1 The SMOS L2 OS Team.
Constraining a global, eddying, ocean and sea ice model with level-2 QuikSCAT wind stress data: First results D. Menemenlis, H. Zhang, H. Brix, and D.
SMOS mission: a new way for monitoring Sea Surface Salinity? J. Boutin (1) (1) Laboratoire d’Oceanographie et du Climat- Expérimentation et Applications.
Locally Optimized Precipitation Detection over Land Grant Petty Atmospheric and Oceanic Sciences University of Wisconsin - Madison.
T. Meissner and F. Wentz Remote Sensing Systems 2014 Aquarius / SAC-D Science Team Meeting November , 2014 Seattle. Washington,
Use of AMSR-E Land Parameter Modeling and Retrievals for SMAP Algorithm Development Steven Chan Eni Njoku Joint AMSR Science Team Meeting Telluride, Colorado.
Ocean Climate Simulations with Uncoupled HYCOM and Fully Coupled CCSM3/HYCOM Jianjun Yin and Eric Chassignet Center for Ocean-Atmospheric Prediction Studies.
Assimilating Satellite Sea-Surface Salinity in NOAA Eric Bayler, NESDIS/STAR Dave Behringer, NWS/NCEP/EMC Avichal Mehra, NWS/NCEP/EMC Sudhir Nadiga, IMSG.
The Inter-Calibration of AMSR-E with WindSat, F13 SSM/I, and F17 SSM/IS Frank J. Wentz Remote Sensing Systems 1 Presented to the AMSR-E Science Team June.
Satellite Microwave Radiometry: Current and Future Products Rogre De Roo and Tony England Atmospheric, Oceanic, and Space Sciences.
A step toward operational use of AMSR-E horizontal polarized radiance in JMA global data assimilation system Masahiro Kazumori Numerical Prediction Division.
QWG-10 – 4-6 February 2013 – ESRIN (Italy) SMOS Level3 and Level 4 Research Products Provided by the Barcelona Expert Center Jordi Font and BEC team SMOS.
Impact of sea surface roughness on SMOS measurements A new empirical model S. Guimbard & SMOS-BEC Team SMOS Barcelona Expert Centre Pg. Marítim de la Barceloneta.
Errors on SMOS retrieved SSS and their dependency to a priori wind speed X. Yin 1, J. Boutin 1, J. Vergely 2, P. Spurgeon 3, and F. Gaillard 4 1. LOCEAN.
Dependence of SMOS/MIRAS brightness temperatures on wind speed: sea surface effect and latitudinal biases Xiaobin Yin, Jacqueline Boutin LOCEAN.
Ocean Salinity Science 2014, 26–28 November, Exeter (UK) J. Ballabrera, N. Hoareau, M. Portabella, E. Garcia-Ladona, A. Turiel SMOS Barcelona Expert Centre.
NSIDC’s Passive Microwave Sensor Transition for Polar Data
SOLab work description
CMOD Observation Operator
INSTITUTE OF MARINE SCIENCES (Barcelona)
Presentation transcript:

A. Montuori 1, M. Portabella 2, S. Guimbard 2, C. Gabarrò 2, M. Migliaccio 1 1 Dipartimento per le Tecnologie (DiT), University of Naples Parthenope, Italy 2 SMOS Barcelona Expert Centre (SMOS-BEC), Institute of Marine Sciences, Barcelona, Spain

 SMOS Mission Overview  SMOS Bayesian-based Cost Function:  General Formulation  Sensitivity Analysis  Multiple-minima Assessment  Effects of constraints  SMOS Bayesian-based minimization procedure Assessment:  Levenberg-Marquardt (LM) procedure (Monte-Carlo simulations)  Optimization for both SSS and wind speed (U 10 ) retrieval purposes

SMOS makes global observations of soil moisture over Earth's landmasses and salinity over the oceans. L-band full-polarized Microwave Imaging Radiometer using Aperture Synthesis (MIRAS). Data Product Generation System (DPGS) provides consistent SSS, SST and SSR (e.g. U 10 ) retrievals through the SMOS Level 2 Salinity Prototype Processor (L2PP) by processing geolocated TBs provided at the SMOS Level 1C (L1C) after the image reconstruction step. Assessment of the Operational SMOS Bayesian-based inversion procedure to develope a parallel simplified version of the SMOS DPGS inversion scheme for the optimal retrieval of SSS and wind speed at sea (U 10 ).

Klein and Swift, 1997 Guimbard et al., 2012 Zine et. al, 2008 p = polarization  = incidence angle SSS = Sea Surface Salinity SST = Sea Surface Temperature U 10 = Wind Speed at 10m N obs = Number of observables

SSS=35psu, SST=20°C, U 10 =5m/s σ SSS =2psu, σ SST =2°C, σ u10 =2.5m/s

Contour Plot of Cost Function True Value Estimated Value Contour Plot of Cost Function True Value Estimated Value SSS=35psu, SST=20°C, U 10 =5m/s σ SSS =2psu, σ SST =2°C, σ u10 =2.5m/s Contour Plot of Cost Function True Value Estimated Value

 Un-constrained cost function (OBS term)  SST constrained cost function (OBS + SST Background) SST Estim - SST True

 Retrieved - True  Retrieved - Prior SSS-U10-SST constrained cost function configuration SSS=35psu, SST=20°C, U 10 =5m/s σ SSS =0.3psu, σ SST =1°C, σ u10 =2m/s

 Retrieved - True  Retrieved - Prior SSS-U10-SST constrained cost function configuration SSS=33psu, SST=0°C, U 10 =14m/s σ SSS =0.3psu, σ SST =1°C, σ u10 =2m/s

 Levenber-Marquardt (Monte-Carlo Simulations approach)  Optimization for SSS and U 10 retrieval:  SST constrained of fixed to an auxiliary a priori value  SSS un-constrained for SSS retrieval  Optimization for SSS and U 10 retrieval:  SST constrained of fixed to an auxiliary a priori value  SSS un-constrained for SSS retrieval

(σ SSS =100psu)

(σ SSS =0.3psu) (σ SSS =100psu)(σ SSS =0.3psu) (σ SSS =100psu)(σ SSS =0.3psu) (σ SSS =100psu)(σ SSS =0.3psu)

SSS (psu) retrieval – DPGS Configuration μ (DPGS / Prior)RMSE (DPGS / Prior)STD (DPGS / Prior) AFEAFAFEAFAFEAF Warm & Low0.01 / / / / / / 0.36 Warm & High0.02 / / / / / / 0.55 Cold & Low-0.07 / / / / / / 1.07 Cold & High0.05 / / / / / / 1.83 U 10 (m/s) retrieval – Fully constrained Configuration μ (DPGS / Prior)RMSE (DPGS / Prior)STD (DPGS / Prior) AFEAFAFEAFAFEAF Warm & Low0.04 / / / / / / 0.91 Warm & High0.03 / / / / / / 0.64 Cold & Low-0.05 / / / / / / 0.72 Cold & High-0.06/ / / / / / 0.49

SSS (psu) retrieval – DPGS Configuration μ (DPGS / Prior)RMSE (DPGS / Prior)STD (DPGS / Prior) AFEAFAFEAFAFEAF Warm & Low-0.01 / / / / / / 0.41 Warm & High0.03 / / / / / / 0.54 Cold & Low0.01 / / / / / / 1.21 Cold & High0.05 / / / / / / 1.79 U 10 (m/s) retrieval – Fully constrained Configuration μ (DPGS / Prior)RMSE (DPGS / Prior)STD (DPGS / Prior) AFEAFAFEAFAFEAF Warm & Low0.04 / / / / / / 0.88 Warm & High-0.04 / / / / / / 0.69 Cold & Low0.08 / / / / / / 0.83 Cold & High0.01 / / / / / / 0.55

 Internal SMOS Bayesian-based processing chain for SSS and U 10 retrieval purposes has been developed.  Low sensitivities of SMOS TB measurements with respect to geophysical parameter changes, especially for SST.  Unique absolute minimum value for all the cost function configurations  Unique triplet solution of SSS-U 10 -SST.  Fixing or constraining SST to an auxiliary value improves the retrieval of SSS and U 10.  Successful assessment of LM minimization procedure for the retrieval of SSS and U 10 by means of realistically simulated SMOS TB measurements.  SSS optimal retrieval  DPGS [SST-U 10 ] configuration.  U 10 optimal retrieval  Fully [SST-SSS-U 10 ] constrained configuration.  Future test with both real SMOS TB data.