Energy Blowing in the Wind N. Keith Tovey, M.A., Phd. CEng, MICE Acknowledgement: Dr Jean Palutikof for use of some of her slides.

Slides:



Advertisements
Similar presentations
1 The Changing Fortunes of the EUs Energy Market Antony Froggatt.
Advertisements

The challenge in UK power generation Steve Riley, Executive Director, Europe London, 3 December 2010.
Dokumentname > Folie 1 > Vortrag > Autor Potentials for Renewables in Europe Wolfram Krewitt DLR Institute of Technical Thermodynamics Systems.
Energy in the U.S. - Why Wind? Financing Wind Power: The Future of Energy Institute for Professional and Executive Development Santa Fe, N.M. July 25,
Energy in the U.S. - Why Wind? Financing Wind Power: The Future of Energy Institute for Professional and Executive Development Scottsdale, Arizona May.
16 th April 2008 Energy Outlook View of an International Oil Company Thierry PFLIMLIN President & CEO Total Oil Asia-Pacific Pte Ltd 2 nd ARF Seminar on.
Opportunities from ‘Dynamic Demand Control’
Wind Farms: Beauty or the Beast? Wind power is a clean, renewable form of energy. But while some environmentalists back the governments plans, others say.
1 Recipient of James Watt Gold Medal Keith Tovey ( ) : MA, PhD, CEng, MICE, CEnv Reader Emeritus in Environmental Science, University of East Anglia Science.
CRed carbon reduction Reader Emeritus in Environmental Sciences; Energy Science Adviser Norwich Business School, University of East Anglia:
CRed carbon reduction Reader Emeritus in Environmental Sciences; Energy Science Adviser Norwich Business School, University of East Anglia:
1 Recipient of James Watt Gold Medal Keith Tovey ( ) : MA, PhD, CEng, MICE, CEnv Reader Emeritus in Environmental Science, University of East Anglia Wenhaston:
1 Recipient of James Watt Gold Medal Keith Tovey ( ) : MA, PhD, CEng, MICE, CEnv Reader Emeritus in Environmental Science, University of East Anglia Rotary.
The Renewable Future for the UK
Energy Security Hard Choices Ahead Keith Tovey ( ) M.A., PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Energy Science Director: Low Carbon.
Recipient of James Watt Gold Medal for Energy Conservation Keith Tovey ( ) M.A., PhD, CEng, MICE, CEnv Reader Emeritus: University of East Anglia 1 Pathways.
CRed carbon reduction Reader Emeritus in Environmental Sciences; Energy Science Adviser Norwich Business School, University of East Anglia:
1 Recipient of James Watt Gold Medal ARAMCO 3 rd July 2013 Overview of oil, gas and alternative energy industry in the UK and Low Carbon options for the.
BREAKOUT SESSION 2 Smart Grid 2-B: Grid Integration – Essential Step for Optimization of Resources Integrating Intermittent Wind Generation into an Island.
Financing Renewable Energy: an introduction to FITs and RHI Andrej Miller Renewable Financial Incentives Office of Renewable Energy Deployment
An Introduction ppt - Saurabh Mehta
Wind Energy. Where is Wind Energy Found? ~ Places where there is constant wind ~ Some places are better for wind turbines ~ How is the wind extracted?
html.
Energy & Its Impact on Global Society Jerome K. Williams, Ph.D. Saint Leo University Dept. Mathematics & Sciences.
Wind Power. Approximately 2% of the solar power that reaches the earth’s surface is converted into wind. Approximately 2% of the solar power that reaches.
Wind Energy, A Route to a Low Carbon Future N. Keith Tovey, M.A., Phd. CEng, MICE Energy Science Director Low Carbon Innovation Centre School of Environmental.
Announcements Read Chapter 7 Quiz on HW 3 Today
Advantages and Disadvantages of Energy Sources
Wind Energy By: Laura Quinn. A Little Background End of 2006: Worldwide capacity of wind-powered generators was 74,223 megawatts. Currently produces less.
Energy mix in Germany in 2011 Renewable energies made up 20%
1 Adviser : Dr. Yuan-Kang Wu Student : Ti-Chun Yeh Date : A review of wind energy technologies.
Some facts about wind power … and the arguments often deployed against wind farms Bob Whitmarsh (Winchester Action on Climate Change) [see Notes for added.
Wind Energy Chemical Engineering Seminar By: Jacqueline Milkovich.
Kevin Little Zack Paull Paul Kane Jeremy Callahan.
Wind Energy By Kofi Kwakwa & Christian Caillaux. What is it? Wind power is the power that is derived from the wind. This energy is used to generate electricity.
 By: Aditya Singh, Sereene Bebwan, Caswell Wyatt, Gabby Hofmeister, Drew Oppong.
An Introduction to wind power By Jack Bradley, University of Bradford.
Energy Blowing in the Wind N. Keith Tovey, M.A., Phd. CEng, MICE Acknowledgement: Dr Jean Palutikof for use of some of her slides Hard Choices Ahead Thorpe.
WIND ENERGY Wind are produced by disproportionate solar heating of the earth’s land and sea surfaces. –It forms about 2% of the solar energy –Small % of.
Power Generation from Renewable Energy Sources
Wind Energy and Wind Power
 Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth.  Wind flow.
RENEWABLE ENERGY POTENTIALS Projections to 2050 BASED ON THE PRESENTATION of Mohamed El-Ashry Chairman REN 21 3rd Ministerial Meeting in Gleneagles Dialogue,
Wind Power Jon Konen April 7, 2008 CBE 555 Presentation.
Wind Power. Would you like to see and increase in wind power production? 1. Yes 2. No.
WIND POWER. Introduction  Energy is a major input for overall socio- economic development of any society  The prices of the fossil fuels steeply increasing.
Norwich Business School 1 NBSLM03E (2010) Low Carbon Technologies and Solutions: Sections N.K. Tovey ( 杜伟贤 ) M.A, PhD, CEng, MICE, CEnv Low Carbon.
School of Environmental Sciences University of East Anglia How can we Fuel all the People all of the time? Dr N. Keith Tovey Hard Choices Ahead.
Wind Power Jennifer Malaga Mister Diaz Leidy Colon.
Wind God by John D. Rockefellar top lawl and Sieng for me swagLy.
Wind Energy, A Route to a Low Carbon Future N. Keith Tovey, M.A., Phd. CEng, MICE Energy Science Director Low Carbon Innovation Centre School of Environmental.
Wind Power and its Science As one of the powerful energy sources.
School of Environmental Sciences University of East Anglia Alternative Energy and Environmental Issues Dr N. Keith Tovey Hard Choices Ahead.
Carbon Emissions and the Need for Improved Energy Efficiency.
Alternative energy source Daniel KardosAron AdroviczMark Rozsavolgyi.
Wind Turbine Design Methods
Overview Wind Energy is currently the fastest renewable power source within our reach. Through this form of energy, the wind’s kinetic force is transformed.
Energy Tic-Tac-Toe Board Renewable Source - Wind Energy By: TJ Hoyt.
An Overview of the Technology and Economics of Offshore Wind Farms
Combined Heat and Power in Copenhagen Copenhagen’s CHP system supplies 97% of the city with clean, reliable and affordable heating and 15% of Denmark’s.
“The Future of Alternative Energy Is Blowing your way”
WIND POWER By: Saed Ghaffari HOW DO YOU CONVERT WIND INTO ELECTRICITY
SHP – Columbia University
Solar Energy III Wind Power.. Should we increase electricity production via wind power? A. Yes B. No.
1. Abstract Introduction Advantages and Disadvantages. Wind Energy Applications. How does it work? 2.
__________________________ © Cactus Moon Education, LLC. CACTUS MOON EDUCATION, LLC ENERGY FROM THE WIND WIND TECHNOLOGIES.
SEMINAR ON SHIP WITH WIND MILLS
VERTICAL AXIS TURBINE Most of the world's energy resources are from the sun's rays hitting earth. Some of that energy has been preserved as fossil energy,
COMBINED DARRIEUS - SAVONIUS WIND TURBINE
Presentation transcript:

Energy Blowing in the Wind N. Keith Tovey, M.A., Phd. CEng, MICE Acknowledgement: Dr Jean Palutikof for use of some of her slides

Renewables Target 10% by 2010 for Electricity Generation 20% by 2020 The European Commission directive 2001: Member States are required to adopt national targets for renewables that are consistent with reaching the Commissions overall target of 12.1 per cent electricity from renewables by UKs indicative target is 10 per cent electricity. The Energy Review 2002

Early Wind Power Devices C 700 AD in Persia used for grinding corn pumping water evidence suggests that dry valleys were Dammed to harvest wind

Traditional Windmills American Homestead Windmill for pumping water Traditional English Windmill Spanish Windmills Note 7 in a cluster of 11

Development of Modern Turbines 1.25 MW Turbine in Vermont (1941) Gedser Wind Turbine, Denmark (1957)

Vertical Axis Machines Musgrove Rotor Carmarthen Bay Darrieus Rotor - machines up to 4 MW have been built.

Other Wind Machines Savonius Rotors - good for pumping water - 3rd World applications Modern Multi-bladed water pumping HAWT.

Whats a modern wind turbine look like? Based on slide by Dr J. Palutikof The Ecotech Turbine avoids having a high speed gear box in the nacelle

Ecotech wind turbine Electricity per annum 3.9 GWh Annual homes equivalent 938 Displacement pa: CO tonnes SO 2 39 tonnes NO x 3 tonnes 67m 66m Dr J. Palutikof

We could make CO 2 targets with all new electricity generation from gas, but then 75% of our electricity will depend on supplies of gas from Russia, Middle East, or North Africa These figures assume we achieve 20% renewable generation by 2022 Energy Scenarios for UK and implications on CO 2 emissions.

Options for Electricity Generation in Non-Renewable Methods

Options for Electricity Generation in Renewable

Renewable Energy comparisons In the home - on average sq m of PhotoVoltaic Cells would provide the equivalent of the electricity requirements of the house

Distribution of Renewable Projects

The UK target for New Renewables set in 1993, was the building of 1500MW of new renewable capacity by How did we do?

Wind Energy in UK (end of 2001) Million Tonnes Carbon Dioxide Sulphur Dioxide Oxides of Nitrogen

Increase in Renewable Component for Electricity Generation to meet Government Target of 10% by 2010 Note: If we meet this target, it will hardly change the non-renewable component - i.e. the renewable deployment will just keep pace with increase in demand. Even if we do meet target (which is far from certain), our CO 2 emissions will rise following from closure of nuclear plant.

National Demand for Electricity also changes rapidly Prices paid by Suppliers vary dramatically over the day The introduction of NETA on 27th March 2001 had an adverse effect on economics of Renewable Energy and CHP

How are we going to meet these demands for electricity in the future? The Energy Review indicates 10% by renewables by 2010 and 20% by In order to get more than 10% of electricity from renewables by 2010 and 20% by 2020, build rates for the leading options would need to be at levels never before seen in the UK. Onshore and offshore wind would need to be installed at a rate of between 1-2 GW per year (i.e turbines the size of Swaffham every year). However, 1.5 GW and 1.6 GW of onshore wind was built in Germany in 1999 and 2000 respectively, and a further 1.2 GW was installed in the first eight months of this year (2001). Build rates of 1 GW per year were also seen Spain in 2000, and 600MW in Denmark in the same year.

Wind Energy in Europe Currently 13,000 MW from wind energy Overall EU target of 12% of energy (22% electricity) from renewables by UK 10%

Onshore Wind Turbines in Denmark

Wind Map of Western Europe: wind resource at 50m above surface Sheltered Open Coast Open sea Hills Dr J. Palutikof

Wind map of UK The detailed picture is much more complex: –Topography –Distance from sea –Roughness –Obstacles Dr J. Palutikof

Power in the wind Kinetic Energy in Wind = where = air density R = blade radius V = Wind Velocity. Because wind cannot come to standstill, only 59.26% is actually available - The Betz Efficiency Cut in speeds Cut out speeds Rated Output

Annual output depends of wind speed distribution Using a typical Wind Speed distribution gives a load factor of around 30% ~ % for fossil fuel stations and nuclear. Actual load factor does depend on Wind Speed Distribution Curve Turbine Rating Curve Prevailing Wind direction can vary significantly as shown by the two rosette plots from stations 150 km apart.

Effect of a forest of trees 20 m tall on output from turbine. At a hub height of 2.5 times trees and 15 tree heights downwind, 16% of energy is lost. Obstructions can affect output for significant distances downwind. Image obtained from

Wind Speed variation with elevation above ground Swaffham Proposed Shipdam Depends on roughness of terrain Increasing hub height increases power by 10%. The wind speed increases logarithmically with elevation.

Spacing of Wind Turbines Interference between adjacent turbines occurs if spacing is less than blade diameters - The Park Effect. With large arrays, % reduction in output will occur with a spacings of ~ 5 blade diameters. Because of square law of swept area, and larger turbines requiring greater spacing, the effective harvest of the wind is approximately the same irrespective of turbine size. However, costs will come down with fewer larger machines.

Proposed Offshore Wind Turbine locations Current Onshore Wind Turbine locations Wind Turbine Locations

Distraction to drivers Danger to birds Radio/Television/Radar Interference Noise - mechanical, aerodynamic, …..infra-sound? Flickering - only relevant within buildings and then only in a precise orientation at selected times of the year. Danger of ice throw - not really a problem as other constraints will mean that a sufficient exclusion zone is present anyway Blade failure Aesthetics - one blade, two blades, three blades, Darrieus, Musgrove? Key Environmental Issues - some of main issues against

Ice can form but if this occurs when stationary, the machine will not start if it forms in operation, then the out of balance on blades is detected and the machine will stop in a few revolutions. Worse case scenario would cause ice to be thrown distances much less than the exclusion zone for noise.

In Denmark, a noise limit of 45 dB is set for isolated houses or 40 dB where several houses are affected. Two turbines close together would increase noise by about 3dB, while increase for 10 would be 10 dB Noise issues

Rule of thumb for noise Europe Distance to houses should be > 7 rotor diameters or ~300 m = 1000 ft. USA Dr J. Palutikof

Noise issues: Mechanical Aerodynamic Infra-sound Problem with high-speed gearboxes in fixed velocity machines. Not an issue with Swaffham/ proposed turbines at Shipdham. Maximum rotation speeds of gearboxless turbines are at a maximum 70% of normal wind turbines, and often much less - hence much less swish noise. This is a subject which is not fully understood - it is at a frequency which would NOT be detected by normal ground vibration. Noise Contours for a cluster of three turbines at Shipdham > 30 dB > 40 dB > 50 dB

One Blade, or Two, or Three?

Visual intrusion Some designs look better than others

.. and some arrays look better than others Dr J. Palutikof

Managing Environmental Issues Safety Issues Visual Issues Noise Issues Bird Strikes TV/Radio Interference First three can be managed using GIS procedures. Exclusion zones can be drawn for each feature type.

Digital Map of part of Norfolk Norwich is in bottom left hand corner Area: 105 sq kms A Strategic assessment of Wind Energy / Biomass Potential

Number of Turbines 65 Mean output 24.4 MW Area for Turbines 20.7 sq km Minimum exclusion zone (400m) around houses/towns. We could add other Planning exclusions etc - areas of particular landscape value etc.

Number of Turbines 33 Mean output 12.4 MW Area for Turbines 10.2 sq km Large exclusion zone (800m) around houses/towns.

Offsets the use of fossil fuels and consequential gaseous emissions of CO 2, SO 2, NOx, CO, NMHC etc. Arguements that fossil fuel power stations have to be kept ready in case wind drops are completely INVALID. Power stations running under lower load use less fuel and it is this which causes the emissions. Improves diversity of supply of electricity will become of increasing importance in future Is becoming technically mature unlike most other renewable technologies (other than energy from waste incineration and hydro) Is the most cost effective Renewable Option currently available, and will remain so for next decade + As electricity will used locally, reduces transmission losses. Key Environmental Issues of Wind Energy - positive aspects

Offshore wind energy - A solution? BUT Wind speeds are high Resource is enormous Visual intrusion is less than for onshore Its expensive Maintenance is problematic

Test location for offshore Wind Turbines in Denmark

Existing European offshore wind farms Dr J. Palutikof

How much energy?

Size of the resource This is based on 1999 consumption figures and is a little optimistic with regard to spacing of turbines - a more realistic figure is given by 40km x 40km From BWEA Web Site

Examples of Offshore Wind

Wind Energy has matured in the last decade. Significant developments are Wind Energy are likely in next decade both onshore and offshore if UK is to meet its targets. However, planning issues may continue to hinder development. In decade to 2000, 1100 MW were proposed, but less than 200 MW were built. We need to manage it to our benefit. Conclusions When questioned, typically % of the public are in favour of Wind Energy, but the opponents are very vociferous.