Robin Hogan, Julien Delanoë, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Evaluating and improving the representation of clouds.

Slides:



Advertisements
Similar presentations
Robin Hogan, Julien Delanoe and Nicola Pounder University of Reading Towards unified retrievals of clouds, precipitation and aerosols.
Advertisements

Synergistic cloud retrievals from radar, lidar and radiometers
Radar/lidar/radiometer retrievals of ice clouds from the A-train
Lidar observations of mixed-phase clouds Robin Hogan, Anthony Illingworth, Ewan OConnor & Mukunda Dev Behera University of Reading UK Overview Enhanced.
Ewan OConnor, Anthony Illingworth, Robin Hogan and the Cloudnet team Cloudnet.
Quantifying sub-grid cloud structure and representing it GCMs
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Liquid water path from microwave radiometers.
Proposed new uses for the Ceilometer Network
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
1 Drizzle rates inferred from CloudSat & CALIPSO compared to their representation in the operational Met Office and ECMWF forecast models. Lee Hawkness-Smith.
R. Forbes, 17 Nov 09 ECMWF Clouds and Radiation University of Reading ECMWF Cloud and Radiation Parametrization: Recent Activities Richard Forbes, Maike.
Satellite Evaluation work at Reading Julien Delanoë/Thorwald Stein/Robin Hogan Collaborations: Richard Forbes (ECMWF)/ Alejandro Bodas-Salcedo (MetOffice)
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Robin Hogan, Andrew Barrett
© University of Reading Richard Allan Department of Meteorology, University of Reading Thanks to: Jim Haywood and Malcolm.
Robin Hogan, University of Reading
Radar/lidar observations of boundary layer clouds
Robin Hogan & Julien Delanoe
Radar & lidar observations of clouds UWERN Cloud systems and Orography meeting Robin Hogan University of Reading, UK 1.Current and future Chilbolton capabilities.
Robin Hogan, Malcolm Brooks, Anthony Illingworth
Joint ECMWF-University meeting on interpreting data from spaceborne radar and lidar: AGENDA 09:30 Introduction University of Reading activities 09:35 Robin.
Robin Hogan Julien Delanoë Nicola Pounder Chris Westbrook
Modelling radar and lidar multiple scattering Robin Hogan
Blind tests of radar/lidar retrievals: Assessment of errors in terms of radiative flux profiles Malcolm Brooks Robin Hogan and Anthony Illingworth David.
Robin Hogan Anthony Illingworth Ewan OConnor Nicolas Gaussiat Malcolm Brooks University of Reading Cloudnet products available from Chilbolton.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
Towards “unified” retrievals of cloud, precipitation and aerosol from combined radar, lidar and radiometer observations Robin Hogan, Julien Delanoë, Nicola.
Robin Hogan Department of Meteorology University of Reading Cloud and Climate Studies using the Chilbolton Observatory.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Clouds processes and climate
Robin Hogan Julien Delanoe Department of Meteorology, University of Reading, UK Towards unified radar/lidar/radiometer retrievals for cloud radiation studies.
Use of ground-based radar and lidar to evaluate model clouds
Evaluating the Met Office global forecast model using GERB data Richard Allan, Tony Slingo Environmental Systems Science Centre, University of Reading.
CloudSat! On 28 th April the first spaceborne cloud radar was launched It joins Aqua: MODIS, CERES, AIRS, AMSU radiometers.
Robin Hogan (with input from Anthony Illingworth, Keith Shine, Tony Slingo and Richard Allan) Clouds and climate.
Integrated lidar backscatter: Quantifying the occurrence of supercooled water and specular reflection Robin Hogan and Anthony Illingworth Enhanced algorithm.
Robin Hogan Ewan OConnor Damian Wilson Malcolm Brooks Evaluation statistics of cloud fraction and water content.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
Robin Hogan Ewan OConnor Anthony Illingworth Nicolas Gaussiat Malcolm Brooks Cloudnet Evaluating the clouds in European forecast models.
Variational cloud retrievals from radar, lidar and radiometers
What can we learn about clouds and their representation in models from the synergy of radar and lidar observations? Robin Hogan, Julien Delanoë, Nicky.
Modelling radar and lidar multiple scattering Modelling radar and lidar multiple scattering Robin Hogan The CloudSat radar and the Calipso lidar were launched.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
Integrated Profiling at the AMF
© European Centre for Medium-Range Weather Forecasts Operational and research activities at ECMWF now and in the future Sarah Keeley Education Officer.
Exploiting multiple scattering in CALIPSO measurements to retrieve liquid cloud properties Nicola Pounder, Robin Hogan, Lee Hawkness-Smith, Andrew Barrett.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
Wesley Berg, Tristan L’Ecuyer, and Sue van den Heever Department of Atmospheric Science Colorado State University Evaluating the impact of aerosols on.
Equation for the microwave backscatter cross section of aggregate snowflakes using the Self-Similar Rayleigh- Gans Approximation Robin Hogan ECMWF and.
EarthCARE: The next step forward in global measurements of clouds, aerosols, precipitation & radiation Robin Hogan ECMWF & University of Reading With input.
ESA Explorer mission EarthCARE: Earth Clouds, Aerosols and Radiation Explorer Joint ESA/JAXA mission Launch 2016 Budget 700 MEuro.
1. The problem of mixed-phase clouds All models except DWD underestimate mid-level cloud –Some have separate “radiatively inactive” snow (ECMWF, DWD) –Met.
Lee Smith Anthony Illingworth
Figure 2.10 IPCC Working Group I (2007) Clouds and Radiation Through a Soda Straw.
Initial 3D isotropic fractal field An initial fractal cloud-like field can be generated by essentially performing an inverse 3D Fourier Transform on the.
The DYMECS project A statistical approach for the evaluation of convective storms in high-resolution models Thorwald Stein, Robin Hogan, John Nicol, Robert.
Metr 415/715 Monday May Today’s Agenda 1.Basics of LIDAR - Ground based LIDAR (pointing up) - Air borne LIDAR (pointing down) - Space borne LIDAR.
Cloud-Aerosol-Radiation Mission Tobias ESA and Terry Nakajima
EarthCARE and snow Robin Hogan University of Reading.
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Southern Ocean cloud biases in ACCESS.
Yuying Zhang, Jim Boyle, and Steve Klein Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory Jay Mace University.
Cloud and precipitation best estimate… …and things I don’t know that I want to know Robin Hogan University of Reading.
Retrieval of Cloud Phase and Ice Crystal Habit From Satellite Data Sally McFarlane, Roger Marchand*, and Thomas Ackerman Pacific Northwest National Laboratory.
Using GERB and CERES data to evaluate NWP and Climate models over the Africa/Atlantic region Richard Allan, Tony Slingo, Ali Bharmal Environmental Systems.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Southern Ocean Clouds Characterization.
12 April 2013 VARSY progress meeting Robin Hogan and Nicola Pounder (University of Reading)
The DYMECS project A statistical approach for the evaluation of convective storms in high-resolution models Thorwald Stein, Robin Hogan, John Nicol, Robert.
EarthCARE and snow Robin Hogan, Chris Westbrook University of Reading
Presentation transcript:

Robin Hogan, Julien Delanoë, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Evaluating and improving the representation of clouds in climate models using spaceborne radar and lidar

Clouds in climate models 14 global models (AMIP) 90N S Latitude Vertically integrated cloud water (kg m -2 ) But all models tuned to give about the same top-of- atmosphere radiation The properties of ice clouds are particularly uncertain Via their interaction with solar and terrestrial radiation, clouds are one of the greatest sources of uncertainty in climate forecasts But cloud water content in models varies by a factor of 10 Need instrument with high vertical resolution…

Spaceborne radar, lidar and radiometers The A-Train –NASA –700-km orbit –CloudSat 94-GHz radar (launch 2006) –Calipso 532/1064-nm depol. lidar –MODIS multi-wavelength radiometer –CERES broad-band radiometer –AMSR-E microwave radiometer EarthCARE (launch 2013) –ESA+JAXA –400-km orbit: more sensitive –94-GHz Doppler radar –355-nm HSRL/depol. lidar –Multispectral imager –Broad-band radiometer –Heart-warming name EarthCare

What do CloudSat and Calipso see? Cloudsat radar CALIPSO lidar Target classification Insects Aerosol Rain Supercooled liquid cloud Warm liquid cloud Ice and supercooled liquid Ice Clear No ice/rain but possibly liquid Ground Delanoe and Hogan (2008, 2010) Radar: ~D 6, detects whole profile, surface echo provides integral constraint Lidar: ~D 2, more sensitive to thin cirrus and liquid clouds but attenuated

Lidar observations Radar observations Visible extinction Ice water content Effective radius Lidar forward model Radar forward model Example ice cloud retrievals Delanoe and Hogan (2010)

Evaluation using CERES TOA fluxes Radar-lidar retrieved profiles containing only ice used with Edwards-Slingo radiation code to predict CERES fluxes Small biases but large random shortwave error: 3D effects? Nicky Chalmers Shortwave Bias 4 W m -2, RMSE 71 W m -2 Longwave Bias 0.3 W m -2, RMSE 14 W m -2

A-Train versus models Ice water content 14 July 2006 Half an orbit 150° longitude at equator Delanoe et al. (2010)

Both models lack high thin cirrus Met Office has too narrow a distribution of in-cloud IWC ECMWF lacks high IWC values; using this work, ECMWF have developed a new scheme that performs better Evaluation of gridbox-mean ice water content In-cloud mean ice water content

Cloud structures in particular locations How can we identify & cure errors in modelling African convection? Unified Model simulations at a range of resolutions Evaluate using A-Train retrievals Also run CloudSat simulator to obtain radar reflectivity from model Moist monsoon flow African easterly jet Saharan air layer Mid-level outflow Parker et al. (QJRMS 2005) Location of African easterly jet

Met Office 40-km model versus CloudSat Frequency of occurrence of reflectivity greater than –30 dBZ Plot versus dynamic latitude (latitude relative to location of AEJ) Anvil cirrus too low in model Little sign of mid-level outflow Unified ModelCloudSat (~01.30 LT)CloudSat (~13.30 LT) Thorwald Stein

Met Office 4-km model versus CloudSat Unified ModelCloudSat (~01.30 LT)CloudSat (~13.30 LT) Note increase from 38 to 70 levels Anvil cirrus now at around the right altitude Slightly more mid-level cloud Large overestimate of stratocumulus (and too low) Thorwald Stein

Ongoing A-Train and EarthCARE activity Preparation for EarthCARE –Professor Anthony Illingworth is the European lead scientist –Professor Robin Hogan is leading the European development of algorithms exploiting the synergy of instruments on EarthCARE: novel variational retrieval methods for clouds, precipitation and aerosol being developed for EarthCARE and tested on A-Train data Past and future projects –Radiative properties of clouds from the A-Train (NERC): Nicky Chalmers (PhD) –Evaluation of models using CloudSat and Calipso (NERC): Julien Delanoe (finished) –High-resolution model evaluation using CloudSat (NERC): Thorwald Stein –Lidar retrievals of liquid clouds (NCEO): Nicola Pounder –Synergy algorithms for EarthCARE (NCEO): Chris Westbrook –Radiative Transfer for EarthCARE (ESA): Julien Delanoe then Chris Westbrook –Variational Synergy algorithms for EarthCARE (ESA): not yet started Future challenges –Assimilate radar and lidar observations into ECMWF model using forward models developed at University of Reading –Retrieve global cloud fields that are consistent with the radiative measurements: can diagnose not only what aspects of clouds are wrong in models, but the radiative error associated with each