CHEMOTHERAPEUTICS OF INFECTIOUS DISEASES Anton Kohút
Basic terminology antibacterial spectrum MIC resistance dysmicrobia superinfection bactericidal effect bacteriostatic effect
Basic criteria for ATB maximal microbial toxicity minimal organ toxicity
Mechanism of ATB action ab a b
Mechanisms of action interference with cell wall synthesis ( -lactams, vancomycin, cycloserin) influence of cell membrane (polymyxines) interference with protein synthesis (CMP, TTC, AMG, macrolides) interference with nucleic acid metabolism (grizeofulvin, rifampicin, quinolones) interference with intermediary metabolism (sulfonamides)
Resistance Is antibiotic resistance inevitable?
Mechanisms of resistance enzymes change of cell wall permeability ↑ synthesis of antagonist (folic acid) change of penicilin-binding protein (PBP) Resistance to antibiotics occurs through four general mechanisms: target modification; efflux; immunity and bypass; and enzyme-catalyzed destruction
In the past two decades we have witnessed: the rise of so-called extended spectrum β- lactamases (ESBLs), which are mutants of enzymes that previously could only inactivate penicillins but now have gained activity against many cephalosporins; carbapenemases such as KPC and NDM-1 that inactivate all β-lactam antibiotics;
plasmid-mediated (and thus horizontally disseminated) resistance to fluoroquinolone antibiotics; the spread of virulent MRSA (methicillin-resistant Staphylococcus aureus) in the community; the rise of multi-drug resistant Neisseria gonorrhoea; the emergence and global dissemination of multi-drug resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae and Enterobacteriaceae; the spread of extensively drug resistant Mycobacterium tuberculosis; resistance to the two newest antibiotics to be approved for clinical use - daptomycin and linezolid.
The discovery of antibiotic classes
Toxic effects of ATB
myelosuppresion (CMP) hematotoxicity (sulfonamides) hepatotoxicity (macrolides) nephrotoxicity (aminoglycosides) ototoxicity (aminoglycosides) neurotoxicity (anti-TBC)
Other side effects (SE) allergy ( -lactams) dysmicrobia (large spectrum ATB) superinfection (large spectrum ATB) Jarisch-Herxheimer (PNC) sy Hoigné (PNC-retard)
Jarisch-Herxheimer
Combinations of ATB
Aims: increase of therapeutic effect decrease in SE prophylaxis of resistance Bacteriostatic (with rapid onset) + bactericidal NEVER !
Principles of ATB therapy
primary focus inf. possible inf. agent sensitivity variability of pacient´s response kinetics penetration hospitalisation ATB SE effectiveness of elimination organs start therapy in right time regular dosing optimal ther. period don´t repeat therapy price of ATB
Bacteria by Site of Infection
Inhibitors of cell wall synhesis -lactams
Alexander Fleming, 1928
Penicillins basic PNC anti-staphyloccocal aminoPNC carboxyPNC acylureidoPNC carbapenems monobactams -lactamase inhib.
Penicillins (bactericidal) Penicillium notatum 6-aminopenicillanic acid penem
Basic PNC benzylpenicilline – PNC G procain-benzyl-PNC benzatine-PNC phenoxymethyl-PNC penamecilline
Natural Penicillins (penicillin G, penicillin VK) Gram-positive Gram-negative pen-susc S. aureusNeisseria sp. pen-susc S. pneumoniae Group streptococci Anaerobes viridans streptococciAbove the diaphragm EnterococcusClostridium sp. Other Treponema pallidum (syphilis)
Penicillin G
Mechanism of action Gram + peptidoglycane PBP lipidic bilayer
Mechanism of action Gram - LPS lipids membrane porines peptidoglycane PBP membrane
Pharmacokinetics i.v. benzylpenicilline – PNC G i.m. Pc-PNC, benzatine-PNC extracellular distribution renal excretion of active substance (probenecide) acidostabile incomplete absorption (60%) hydrolytic cleavage, activation, prolonged effect (penamecilline)
PNC a poorly lipid soluble and do not cross the blood brain brain barrier Whey are actively excreted unchanged by the kidney (the dose should be reduced in severe renal failure) Tubular secretion can be blocked by probenecid to potentiate PNC action
Antimicrobial spectrum gram + cocci (St. pyogenes, St.viridans, St. pneumoniae) staphylococci ( -lactamase-negative) gram + bacilly (B.anthracis, C. diphteriae, L. monocytogenes, C. perfringens tetani) gram – bacilly (Pasteurella) spirochetes (Treponema) borelia, leptospira (B.anthracis, C. diphteriae, L. monocytogenes, C. perfringens tetani)
SE anaphylaxis Jarisch- Herxheimer sy Hoigné neurotoxicity allergy pregnancy breast feeding are not contraindicted
Penicillinase-Resistant Penicillins (nafcillin, oxacillin, methicillin) Developed to overcome the penicillinase enzyme of S. aureus which inactivated natural penicillins Gram-positive methicillin-susceptible S. aureus Group streptococci viridans streptococci
Antistaphylococcal PNC (penicillinase-resistant) meticilline (acidolabile) oxacilline cloxacilline dicloxacilline acidostabile absorption subst.- dependent strong alb. binding good diffusion in parenchym. org. weak BB barrier passage
Antistaphylococcal PNC (penicillinase-resistant) Sensitivity: staphylococci ( -lactamase-positive) Resistance: enterococci gram - bacteries
Aminopenicillins (ampicillin, amoxicillin) Developed to increase activity against gram-negative aerobes Gram-positive Gram-negative pen-susc S. aureusProteus mirabilis Group streptococciSalmonella, Shigella viridans streptococcisome E. coli Enterococcus sp. L- H. influenzae Listeria monocytogenes
Amino-PNC (penicillinase-non-resistant) ampicilline amoxicilline combination with clavulanic acid acidostabile absorption variable low albumine binding good inflammatory tissue diffusion increased bile concentration mild nephrotoxicity
Amino-PNC (penicillinase-non-resistant) Sensitivity: gram + cocci enterococci gram – cocci (N.meningitis & gonorrhoeae) H. influenzae aerobic gram – bacilly (E.coli, Salmonella,Shigella) Resistance: enterobacteriaceae staphylococci ( -lactamase-positive) Pseudomonas B. fragilis
-lactamase inhibitors clavulanic acid sulbactam tazobactam irreversible inhibition combination with - lactame ATB similar kinetics & tissue penetration with no antibacterial activity
Penicillin Pearls Amoxicillin - Largest selling antibiotic Amoxicillin – High dose for otitis media Augmentin now has several new products Ampicillin/Sulbactam – Anaerobes!
Carboxypenicillins (carbenicillin, ticarcillin) Developed to further increase activity against resistant gram-negative aerobes Gram-positiveGram-negative marginalProteus mirabilis Salmonella, Shigella some E. coli L- H. influenzae Enterobacter sp. Pseudomonas aeruginosa
Carboxy-PNC (antipseudomonas PNC) carbenicilline ticarcilline combination with clavulanic acid Pseudomonas Proteus anaerobs severe infections septicemies meningitis endocarditis urogenital & respiratory infections
Ureidopenicillins (piperacillin, azlocillin) Developed to further increase activity against resistant gram-negative aerobes Gram-positiveGram-negative viridans strepProteus mirabilis Group strepSalmonella, Shigella some EnterococcusE. coli L- H. influenzae Anaerobes Enterobacter sp. Fairly good activityPseudomonas aeruginosa Serratia marcescens some Klebsiella sp.
Acylureido-PNC (wider spectrum against gram – bacilly) piperacilline azlocilline combination with tazobactam gram + cocci gram - bacteries Pseudomonas severe infections septicemies meningitis endocarditis abdominal cavity inf. pneumonia
Carbapenems ( -lactams with the widest spectrum) imipenem combination with cilastatin (renal dehydropeptidase inhibitor) good tissue penetration good BB barrier difusion renal excretion-70% of active substance rest as metabolites
Carbapenems ( -lactams with the widest spectrum) gram + cocci, staphylococci (even producing penicillinase) Enterococcus faecalis, Listeria monocytogenes gram – aerobs enterobacteries anaerobic bacteries
Monobactams aztreonam good tissue & body fluid penetration good BB barrier difusion good bone penetration renal elimination
Monobactams Sensitivity: exclusively gram – aerobic bacteries (N.meningitis a gonorrhoeae, H. influenzae) aerobic gram – bacilly (E.coli, Salmonella,Shigella) Pseudomonas aeruginosa Resistance: gram + bacteries anaerobs
Cephalosporins
Cephalosporins (bactericidal) Acremonium chrysogenum 7- aminocephalosporanic acid cefem
Classification and Spectrum of Activity of Cephalosporins Divided into 4 major groups called “Generations” Are divided into Generations based on antimicrobial activity resistance to beta-lactamase
Cephalosporins - I. generation cephazolin cephalotin cephalexin cephadroxil good GI absorption higher levels & activity (parent.) renal elimination of active substance allergies, flebitis, blood cell formation
Cephalosporins - I. generation Sensitivity: high effectiveness gram + cocci resistance to -lactamases of staphylococci Resistance: gram - bacteries weak resistance to -lactamases of gram - bacteries
Cephalosporins - II. generation cefuroxim cephamandol cefuroxim-axetil cephaclor current gram – infections with good sensitivity renal elimination 85-95% (50% in cefuroxim-axetil) risk of bleeding (cephamandol)
Cephalosporins - II. generation Sensitivity: high effectiveness gram + cocci good effectiveness some gram - bacteries Resistance: Proteus vulgaris Providencia spp. Serratia spp.
Cephalosporins - III. generation cephotaxim cephtrizoxim cephtriaxom cephtazidine cephixim cephtibutem cephetamet- pivoxil rare gram – infections mixed gram – & + gram – meningitis severe pseudomonas infections severe Haemophilus inf. infections renal elimination in dependence on substance pseudomembranous colitis, bleeding, allergy
Cephalosporins - III. generation Sensitivity: lower effectiveness: gram + cocci the highest effectiveness gram – bacteries majority of pseudomonas Resistance: Klebsiella pneumoniae (produces cephotaximases) some E.coli, Proteus mirabilis, Salmonella spp. (chromosome encoding -lactamases)
Cephalosporins - IV. generation cefpirom cefepim high effectiveness gram + & gram – bacteries Pseudomonas aer. enterobacter spp. & citrobacter spp. resist. to III. gen.
Pearls - Cephalosporins For gram positive coverage: Cefazolin –When being used for osteomyelits, maximum dosing (150 mg/kg/day) should be used to ensure adequate distribution to affected areas. For meningitis in pediatrics patients: Neonates-cefotaxime (plus ampicillin) Infants and Children-ceftriaxone Excreted via biliary and urinary tract. May cause biliary sludging and cholecystitis. For Anaerobic coverage: cefoxitin For pseudomonas coverage: ceftazidime and cefepime
cephalosporins cephalosporins ethanol ethanol
QUESTIONS?