Robin Hogan Chris Westbrook, Tyrone Dunbar, Alan Grant, Ewan OConnor, Anthony Illingworth, Stephen Belcher, Janet Barlow Dept of Meteorology, University.

Slides:



Advertisements
Similar presentations
The University of Reading Helen Dacre AGU Dec 2008 Boundary Layer Ventilation by Convection and Coastal Processes Helen Dacre, Sue Gray, Stephen Belcher.
Advertisements

Robin Hogan Alan Grant, Ewan O’Connor,
Robin Hogan, Chris Westbrook University of Reading Lin Tian NASA Goddard Space Flight Center Phil Brown Met Office Why it is important that ice particles.
Lidar observations of mixed-phase clouds Robin Hogan, Anthony Illingworth, Ewan OConnor & Mukunda Dev Behera University of Reading UK Overview Enhanced.
Quantifying sub-grid cloud structure and representing it GCMs
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
Proposed new uses for the Ceilometer Network
Micrometeorology Surface Layer Dynamics and Surface Energy Exchange
Dynamical and Microphysical Evolution of Convective Storms (DYMECS) University: Robin Hogan, Bob Plant, Thorwald Stein, Kirsty Hanley, John Nicol Met Office:
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
C=0.3D +/- 25% Realistic range of aspect ratios: - columns, plates, branched, dendrites Auer & Veal (1970) sizes 100 to 1mm - bullet rosette arm widths.
Convection Initiative discussion points What info do parametrizations & 1.5-km forecasts need? –Initiation mechanism, time-resolved cell size & updraft.
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Robin Hogan, Andrew Barrett
Radar/lidar observations of boundary layer clouds
Robin Hogan, Julien Delanoë, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Evaluating and improving the representation of clouds.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
Robin Hogan Department of Meteorology University of Reading Cloud and Climate Studies using the Chilbolton Observatory.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Clouds processes and climate
Robin Hogan, Chris Westbrook University of Reading Lin Tian NASA Goddard Space Flight Center Phil Brown Met Office The importance of ice particle shape.
Robin Hogan & Anthony Illingworth Department of Meteorology University of Reading UK Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities.
Robin Hogan Department of Meteorology University of Reading Observations of boundary- layer turbulence using Doppler lidar and surface fluxes.
Robin Hogan (with input from Anthony Illingworth, Keith Shine, Tony Slingo and Richard Allan) Clouds and climate.
Robin Hogan Ewan OConnor Anthony Illingworth Department of Meteorology, University of Reading UK PDFs of humidity and cloud water content from Raman lidar.
Robin Hogan Ewan OConnor Damian Wilson Malcolm Brooks Evaluation statistics of cloud fraction and water content.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
Clouds and their turbulent environment
Moisture Transport in Baroclinic Waves Ian Boutle a, Stephen Belcher a, Bob Plant a Bob Beare b, Andy Brown c 24 April 2014.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
LARGE EDDY SIMULATION Chin-Hoh Moeng NCAR.
Clouds and cloud microphysics Wojciech W. Grabowski National Center for Atmospheric Research, Boulder, Colorado, USA (on collaborative leave at CNRM, Toulouse,
Aerosol-Precipitation Responses Deduced from Ship Tracks as Observed by CloudSat Matthew W. Christensen 1 and Graeme L. Stephens 2 Department of Atmospheric.
Matthew Shupe Ola Persson Paul Johnston Cassie Wheeler Michael Tjernstrom Surface-Based Remote-Sensing of Clouds during ASCOS Univ of Colorado, NOAA and.
Preliminary Experiments with a Dynamics-Based PDF Parameterization for Boundary Layers and Associated Clouds in GCMs Leo Donner, Huan Guo, and Chris Golaz.
The impact of boundary layer dynamics on mixing of pollutants Janet F.Barlow 1, Tyrone Dunbar 1, Eiko Nemitz 2, Curtis Wood 1, Martin Gallagher 3, Fay.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology The Effect of Turbulence on Cloud Microstructure,
Remote sensing of Stratocumulus using radar/lidar synergy Ewan O’Connor, Anthony Illingworth & Robin Hogan University of Reading.
Initial 3D isotropic fractal field An initial fractal cloud-like field can be generated by essentially performing an inverse 3D Fourier Transform on the.
IRCTR - International Research Centre for Telecommunication and Radar ATMOS Ice crystals properties retrieval within ice and mixed-phase clouds using the.
Large-Eddy Simulation of a stratocumulus to cumulus transition as observed during the First Lagrangian of ASTEX Stephan de Roode and Johan van der Dussen.
Remote-sensing of the environment (RSE) ATMOS Analysis of the Composition of Clouds with Extended Polarization Techniques L. Pfitzenmaier, H. Russchenbergs.
Cumulus Clouds. What goes on inside a cumulus cloud?
Anthony Illingworth, Robin Hogan, Ewan O’Connor, U of Reading, UK Dominique Bouniol, CETP, France CloudNET: retrieving turbulence parameters from cloud.
Case Study Example 29 August 2008 From the Cloud Radar Perspective 1)Low-level mixed- phase stratocumulus (ice falling from liquid cloud layer) 2)Brief.
, UTC. Supercooled liquid water Moments only from „principal peak“; can change between liquid and ice peak depending on which one is.
Boundary Layer Convection Convection in the boundary layer occurs to transport heat moisture, and momentum from surface to free atmosphere Two common scenarios:
Matthew Shupe, Ola Persson, Amy Solomon CIRES – Univ. of Colorado & NOAA/ESRL David Turner NOAA/NSSL Dynamical and Microphysical Characteristics and Interactions.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
Turbulent properties: - vary chaotically in time around a mean value - exhibit a wide, continuous range of scale variations - cascade energy from large.
Budgets of second order moments for cloudy boundary layers 1 Systematische Untersuchung höherer statistischer Momente und ihrer Bilanzen 1 LES der atmosphärischen.
Large Eddy Simulation of PBL turbulence and clouds Chin-Hoh Moeng National Center for Atmospheric Research.
Aerosol-Cloud Interactions and Radiative Forcing: Modeling and Observations Graham Feingold 1, K. S. Schmidt 2, H. Jiang 3, P. Zuidema 4, H. Xue 5, P.
Evaluating forecasts of the evolution of the cloudy boundary layer using radar and lidar observations Andrew Barrett, Robin Hogan and Ewan O’Connor Submitted.
RICO Modeling Studies Group interests RICO data in support of studies.
Toulouse IHOP meeting 15 June 2004 Water vapour variability within the growing convective boundary layer of 14 June 2002 with large eddy simulations and.
Matthew Shupe Ola Persson Paul Johnston Duane Hazen Clouds during ASCOS U. of Colorado and NOAA.
April Hansen et al. [1997] proposed that absorbing aerosol may reduce cloudiness by modifying the heating rate profiles of the atmosphere. Absorbing.
Boundary Layer Clouds.
Towards a Characterization of Arctic Mixed-Phase Clouds Matthew D. Shupe a, Pavlos Kollias b, Ed Luke b a Cooperative Institute for Research in Environmental.
Modelling and observations of droplet growth in clouds A Coals 1, A M Blyth 1, J-L Brenguier 2, A M Gadian 1 and W W Grabowski 3 Understanding the detailed.
PAPERSPECIFICS OF STUDYFINDINGS Kohler, 1936 (“The nucleus in and the growth of hygroscopic droplets”) Evaporate 2kg of hoar-frost and determined Cl content;
- 1 - Satellite Remote Sensing of Small Ice Crystal Concentrations in Cirrus Clouds David L. Mitchell Desert Research Institute, Reno, Nevada Robert P.
Large Eddy Simulations of Entrainment and Inversion Structure Alison Fowler (MRes Physics of Earth and Atmosphere) Supervisor: Ian Brooks Entrainment Zone.
© Crown copyright Met Office Cloud observations at Cardington Simon Osborne (OBR, Cardington) OBR Conference, 11 th -13 th December 2012.
Group interests RICO data required
John Marsham and Steven Dobbie
Turbulent Kinetic Energy (TKE)
Group interests RICO data in support of studies
Presentation transcript:

Robin Hogan Chris Westbrook, Tyrone Dunbar, Alan Grant, Ewan OConnor, Anthony Illingworth, Stephen Belcher, Janet Barlow Dept of Meteorology, University of Reading Microphysics and boundary- layer research from long-term Doppler lidar observations

Resolving small-crystal controversy Aircraft probe measurements: enormous numbers (1 cm -3 ) of tiny crystals < 50m in cirrus Cloud physics community is divided: are these real or an artefact due to break-up of larger particles on inlet? Mitchell (2008) showed that if included in climate model, cloud albedo doubled Example time series: cirrus layer, falling at 0.5m/s BL aerosol concentration size real or fake? 50 m

1.5-years of Doppler lidar data Much better agreement when small crystals are not included Suggests that they are not ubiquitous and are at least partially explained by shattering on aircraft probles Westbrook & Illingworth (Geophys. Res. Lett., 2009) 1.5 years of data observations predicted range with small crystals predicted range without small crystals

Doppler velocity m/s Chilbolton 35-GHz Copernicus radar Sometimes small-crystals do exist Deep ice cloud Single mode at cloud top Nucleation at mid-levels Bimodal when warmer than -15C –Large aggregates ~1 m/s –Small pristine plates ~0.3 m/s –Black crosses show Doppler lidar Sometimes small ice can be seen to be falling from supercooled liquid layers Westbrook et al. (2010, QJRMS)

Two-color rain/drizzle sizing Refractive index of water at 1.5 m: 1.32 – i –Half of energy absorbed over path of 600 m Refractive index of water at 905 nm: 1.33 – i –1% of energy absorbed over path of 600 m Color ratio in rain and drizzle is monotonically related to size –Can derive rain rate and any other moment of the distribution –In particular, can predict the radar reflectivity for verification In principle, could use the Doppler capability to also infer vertical wind –Similar to OConnor et al. (JTECH 2005) for radar/lidar drizzle sizing Sizing also possible in ice, although interpretation of the size measurement depends on particle habit Westbrook et al. (2010, Atmos. Meas. Technol.)

Hogan et al. (QJRMS 2009) Input of sensible heat grows a new cumulus-capped boundary layer during the day (small amount of stratocumulus in early morning) Convection is switched off when sensible heat flux goes negative at 1800 Surface heating leads to convectively generated turbulence Boundary layer dynamics

Comparing variance to previous studies New contribution to variance Lidar temporal resolution of ~30 s –Smallest eddies not detected, so add them using -5/3 law –Only valid in convective boundary layers where part of the inertial subrange is detected Normalize variance by convective velocity scale –Reasonable agreement with Sorbjan (1980) and Lenschow et al. (1989)

Skewness Skewness defined as –Positive in convective daytime boundary layers –Agrees with aircraft observations of LeMone (1990) when plotted versus the fraction of distance into the boundary layer Useful for diagnosing source of turbulence

Height Potential temperature Longwave cooling Shortwave heating Cloud Height Negatively buoyant plumes generated at cloud top: upside-down convection and negative skewness Positively buoyant plumes generated at surface: normal convection and positive skewness Stratocumulus cloud 11 April 2007

Inferring sensible heat flux Vertical wind variance matches what would be predicted from measured surface sensible heat flux H (via w*) Over urban areas it is impossible to measure a representative H using eddy correlation Tyrone Dunbar, Stephen Belcher and Janet Barlow are developing a technique to infer H from variance of vertical wind Optimal estimation technique to find H and h that best fit w 2 (z) Reasonable fit to sonic over Chilbolton

Estimating TKE dissipation rate Can estimate from variance in vertical velocity over ~1 min, and horizontal wind-speed OConnor et al. (2010, submitted to JTECH) - In-situ validation from tethered balloon -Backscatter -Dissipation rate -Error in dissipation rate

Lots of uses for 1.5- m Doppler lidar Properties of small crystals Microphysics of mixed-phase clouds Size of raindrops and large ice particles (with two lidars) Vertical wind at liquid cloud base for activation of CCN TKE dissipation rate – evaluation of large-eddy models Inferring sensible heat flux over urban areas Determining source of turbulence (top-down or bottom-up) Evaluating boundary layer parameterizations in GCMs/NWP Evaluating vertical velocity representation in dispersion models

Skewness in convective BLs Both model simulations and laboratory visualisation show convective boundary layers heated from below to have narrow, intense updrafts and weak, broad downdrafts, i.e. positive skewness Courtesy Peter Sullivan NCAR Narrow fast updrafts Wide slow downdrafts

Why is skewness positive? Consider TKE budget: Vertical flux of TKE is –So skewness positive when TKE transported upwards by turbulence TKE generated by shear and buoyancy in lower BL TKE destroyed by dissipation & buoyancy suppression at BL top TKE transported upwards by turbulence Transport Stull

...a alternative related explanation Updraft regions of large eddies have more intense small- scale turbulence than the downdraft regions This leads to an asymmetric velocity distribution Will test this later... Large eddies only All eddies

Cospectrum Vertical wind from 11 April 2007 at time of transition The cospectrum, C ww2 : –Defined as the complex conjugate of FFT of w multiplied by FFT of w 2 Can be thought of as a spectral decomposition of the third moment: Hunt et al. (1988) showed that it goes as freq -2 in intertial subrange Skewness dominated by larger (20 minute timescale) eddies

Closed-cell stratocu. Previous studies have shown updraft/downdraft asymmetry in stratocumulus at the largest scales Puzzle as to why aspect ratio of cells is as much as 30:1 Shao & Randall (JAS 1996)

Aircraft vs LES LES: Moeng and Wyngaard (1988) Aircraft observations: LeMone (1990)

Upside-down Carsons model If all the physics is the same but inverted, we can apply Carsons model to predict the growth of the cloud-top- cooling driven mixed layer With longwave cooling rate of H = 30 W m -2 and lapse rate of = 1 K km -1, we estimate growth of 1.1 km in 3 hours, approximately the same as observed

Comparison of top-down and bottom-up Variance of vertical wind –Good agreement with previous studies if H = 30 W m -2 –Variance peaks in upper third of BL: agrees with Lenschow et al.s fit provided theirs is inverted in height Skewness –Very good agreement with the fit of LeMone (1990) to aircraft data provided hers is inverted in sign and height Hogan et al. (QJRMS 2009)