Joint ECMWF-University meeting on interpreting data from spaceborne radar and lidar: AGENDA 09:30 Introduction University of Reading activities 09:35 Robin.

Slides:



Advertisements
Similar presentations
Estimation of clouds in atmospheric models Tomislava Vukicevic CIRA/CSU and PAOS/CU.
Advertisements

Fast lidar & radar multiple-scattering models for cloud retrievals Robin Hogan (University of Reading) Alessandro Battaglia (University of Bonn) How can.
Robin Hogan, Julien Delanoe and Nicola Pounder University of Reading Towards unified retrievals of clouds, precipitation and aerosols.
Synergistic cloud retrievals from radar, lidar and radiometers
Robin Hogan, Chris Westbrook University of Reading Lin Tian NASA Goddard Space Flight Center Phil Brown Met Office Why it is important that ice particles.
Radar/lidar/radiometer retrievals of ice clouds from the A-train
Lidar observations of mixed-phase clouds Robin Hogan, Anthony Illingworth, Ewan OConnor & Mukunda Dev Behera University of Reading UK Overview Enhanced.
Ewan OConnor, Anthony Illingworth, Robin Hogan and the Cloudnet team Cloudnet.
Quantifying sub-grid cloud structure and representing it GCMs
The time-dependent two-stream method for lidar and radar multiple scattering Robin Hogan (University of Reading) Alessandro Battaglia (University of Bonn)
Robin Hogan, Chris Westbrook University of Reading, UK Alessandro Battaglia University of Leicester, UK Fast forward modelling of radar and lidar depolarization.
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
1 All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Liquid water path from microwave radiometers.
Proposed new uses for the Ceilometer Network
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
1 Drizzle rates inferred from CloudSat & CALIPSO compared to their representation in the operational Met Office and ECMWF forecast models. Lee Hawkness-Smith.
R. Forbes, 17 Nov 09 ECMWF Clouds and Radiation University of Reading ECMWF Cloud and Radiation Parametrization: Recent Activities Richard Forbes, Maike.
Satellite Evaluation work at Reading Julien Delanoë/Thorwald Stein/Robin Hogan Collaborations: Richard Forbes (ECMWF)/ Alejandro Bodas-Salcedo (MetOffice)
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Robin Hogan, Nicola Pounder University of Reading, UK
Robin Hogan, Andrew Barrett
Radar/lidar observations of boundary layer clouds
Robin Hogan, Julien Delanoë, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Evaluating and improving the representation of clouds.
Robin Hogan & Julien Delanoe
Robin Hogan Julien Delanoë Nicola Pounder Chris Westbrook
Modelling radar and lidar multiple scattering Robin Hogan
Blind tests of radar/lidar retrievals: Assessment of errors in terms of radiative flux profiles Malcolm Brooks Robin Hogan and Anthony Illingworth David.
Robin Hogan Anthony Illingworth Ewan OConnor Nicolas Gaussiat Malcolm Brooks University of Reading Cloudnet products available from Chilbolton.
Towards “unified” retrievals of cloud, precipitation and aerosol from combined radar, lidar and radiometer observations Robin Hogan, Julien Delanoë, Nicola.
Robin Hogan Department of Meteorology University of Reading Cloud and Climate Studies using the Chilbolton Observatory.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Clouds processes and climate
Robin Hogan, Chris Westbrook University of Reading Lin Tian NASA Goddard Space Flight Center Phil Brown Met Office The importance of ice particle shape.
Robin Hogan Julien Delanoe Department of Meteorology, University of Reading, UK Towards unified radar/lidar/radiometer retrievals for cloud radiation studies.
Use of ground-based radar and lidar to evaluate model clouds
CloudSat! On 28 th April the first spaceborne cloud radar was launched It joins Aqua: MODIS, CERES, AIRS, AMSU radiometers.
Robin Hogan (with input from Anthony Illingworth, Keith Shine, Tony Slingo and Richard Allan) Clouds and climate.
Robin Hogan Ewan OConnor Anthony Illingworth Department of Meteorology, University of Reading UK PDFs of humidity and cloud water content from Raman lidar.
Integrated lidar backscatter: Quantifying the occurrence of supercooled water and specular reflection Robin Hogan and Anthony Illingworth Enhanced algorithm.
Robin Hogan Ewan OConnor Damian Wilson Malcolm Brooks Evaluation statistics of cloud fraction and water content.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
Robin Hogan Ewan OConnor Cloudnet level 3 products.
Variational cloud retrievals from radar, lidar and radiometers
What can we learn about clouds and their representation in models from the synergy of radar and lidar observations? Robin Hogan, Julien Delanoë, Nicky.
Modelling radar and lidar multiple scattering Modelling radar and lidar multiple scattering Robin Hogan The CloudSat radar and the Calipso lidar were launched.
Integrated Profiling at the AMF
Enhancement of Satellite-based Precipitation Estimates using the Information from the Proposed Advanced Baseline Imager (ABI) Part II: Drizzle Detection.
Application of Cloudnet data in the validation of SCIAMACHY cloud height products Ping Wang Piet Stammes KNMI, De Bilt, The Netherlands CESAR Science day,
Exploiting multiple scattering in CALIPSO measurements to retrieve liquid cloud properties Nicola Pounder, Robin Hogan, Lee Hawkness-Smith, Andrew Barrett.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
1 An initial CALIPSO cloud climatology ISCCP Anniversary, July 2008, New York Dave Winker NASA LaRC.
EarthCARE: The next step forward in global measurements of clouds, aerosols, precipitation & radiation Robin Hogan ECMWF & University of Reading With input.
ESA Explorer mission EarthCARE: Earth Clouds, Aerosols and Radiation Explorer Joint ESA/JAXA mission Launch 2016 Budget 700 MEuro.
1. The problem of mixed-phase clouds All models except DWD underestimate mid-level cloud –Some have separate “radiatively inactive” snow (ECMWF, DWD) –Met.
Lee Smith Anthony Illingworth
Figure 2.10 IPCC Working Group I (2007) Clouds and Radiation Through a Soda Straw.
Initial 3D isotropic fractal field An initial fractal cloud-like field can be generated by essentially performing an inverse 3D Fourier Transform on the.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
EarthCARE and snow Robin Hogan University of Reading.
Applications and Limitations of Satellite Data Professor Ming-Dah Chou January 3, 2005 Department of Atmospheric Sciences National Taiwan University.
Estimation of Cloud and Precipitation From Warm Clouds in Support of the ABI: A Pre-launch Study with A-Train Zhanqing Li, R. Chen, R. Kuligowski, R. Ferraro,
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Southern Ocean cloud biases in ACCESS.
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
Yuying Zhang, Jim Boyle, and Steve Klein Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory Jay Mace University.
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
Cloud and precipitation best estimate… …and things I don’t know that I want to know Robin Hogan University of Reading.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
Robin Hogan Anthony Illingworth Marion Mittermaier Ice water content from radar reflectivity factor and temperature.
12 April 2013 VARSY progress meeting Robin Hogan and Nicola Pounder (University of Reading)
Presentation transcript:

Joint ECMWF-University meeting on interpreting data from spaceborne radar and lidar: AGENDA 09:30 Introduction University of Reading activities 09:35 Robin Hogan - Overview of CloudSat/CALIPSO/EarthCARE work at University 09:50 Julien Delanoe - Ice cloud retrievals from CloudSat, CALIPSO & MODIS 10:05 Lee Smith - Retrieval of liquid water content from CloudSat and CALIPSO 10:20-10:35 Coffee ECMWF Activities 10:35 Marta Janiskova- Overview of CloudSat/CALIPSO activities at ECMWF 10:50 Olaf Stiller - Estimating representativity errors 11:05 Richard Forbes - ECMWF model cloud verification 11:20 Maike Ahlgrimm - Lidar derived cloud fraction for model comparison 11:35-12:30 Discussion Retrievals, forward models and error characteristics Verification of models Possibilities for collaboration 12:30 Lunch in the canteen

Recent CloudSat/CALIPSO/EarthCARE- related work at University of Reading Forward models and model evaluation –Lidar forward modelling to evaluate the ECMWF model from IceSAT –Multiple scattering model for spaceborne radar and lidar (Hogan) Retrievals and model evaluation –LITE lidar estimates of supercooled water occurrence –Radar retrievals of liquid clouds (Lee Smith, Anthony Illingworth) –Variational radar-lidar-radiometer retrieval of ice clouds (Delanoe) ESA CASPER project (Clouds and Aerosol Synergy Products from EarthCARE Retrievals) –Defined the required cloud, aerosol and precipitation products –Developed variational ice cloud retrieval for EarthCARE that uses the cloud radar, the High Spectral Resolution Lidar (HSRL; the same technology as ADM) and the infrared channels of the multispectral imager

Ongoing/future work Forward models and model evaluation –Use the CloudSat simulator to evaluate the 90-km resolution HiGEM version of the Met Office climate model (Margaret Woodage) –Use the CloudSat simulator to evaluate 1-km large-domain simulations of tropical clouds in CASCADE (Thorwald Stein) Retrievals and model evaluation –Ongoing comparisons with MO and ECMWF models (Smith & Delanoe) –Use of retrievals to evaluate the CASCADE model (Thorwald Stein) CloudSat, CALIPSO and EarthCARE algorithm development –Develop a unified retrieval algorithm for clouds, precipitation and aerosols simultaneously using radar, lidar, infrared radiances and possibly microwave radiances (Nicola Pounder, Hogan, Delanoe) Science questions –What is the radiative impact of errors in model clouds? Use retrievals, CERES observations and radiative transfer calcs. (Nicky Chalmers) –What is the distribution of supercooled water in the atmosphere and why is it so difficult to model? (Andrew Barrett)

ECMWF clouds vs IceSAT using a lidar forward model Cloud observations from IceSAT 0.5-micron lidar (first data Feb 2004) Global coverage but lidar attenuated by thick clouds: direct model comparison difficult Optically thick liquid cloud obscures view of any clouds beneath Solution: forward-model the measurements (including attenuation) using the ECMWF variables Lidar apparent backscatter coefficient (m -1 sr -1 ) Latitude Wilkinson, Hogan, Illingworth and Benedetti (Monthly Weather Review 2008)

Simulate lidar backscatter: –Create subcolumns with max-rand overlap –Forward-model lidar backscatter from ECMWF water content & particle size –Remove signals below lidar sensitivity ECMWF raw cloud fraction ECMWF cloud fraction after processing IceSAT cloud fraction

Global cloud fraction comparison ECMWF raw cloud fraction ECMWF processed cloud fraction IceSAT cloud fraction Results for October 2003 –Tropical convection peaks too high –Too much polar cloud –Elsewhere agreement is good Results can be ambiguous –An apparent low cloud underestimate could be a real error, or could be due to high cloud above being too thick

Examples of multiple scattering LITE lidar (<r, footprint~1 km) CloudSat radar (>r)Stratocumulus Intense thunderstorm Surface echo Apparent echo from below the surface

Fast multiple scattering forward model CloudSat-like example New method uses the time- dependent two-stream approximation Agrees with Monte Carlo but ~10 7 times faster (~3 ms) Added to CloudSat simulator Hogan and Battaglia (J. Atmos. Sci. 2008) CALIPSO-like example

Combining radar and lidar… Cloudsat radar CALIPSO lidar Preliminary target classification Insects Aerosol Rain Supercooled liquid cloud Warm liquid cloud Ice and supercooled liquid Ice Clear No ice/rain but possibly liquid Ground Radar and lidar Radar only Lidar only Global-mean cloud fraction Radar misses a significant amount of ice

Unified retrieval framework New ray of data: define state vector Use classification to specify variables describing each species at each gate Ice: extinction coefficient and N 0 * Liquid: liquid water content and number concentration Rain: rain rate and mean drop diameter Aerosol: extinction coefficient and particle size Radar model Including surface return and multiple scattering Lidar model Including HSRL channels and multiple scattering Radiance model Solar and IR channels Compare to observations Check for convergence Gauss-Newton iteration Derive a new state vector Forward model Not converged Converged Proceed to next ray of data (Black) Ingredients already developed (Delanoe and Hogan JGR 2008) (Red) Ingredients remaining to be developed

Supercooled water layers have large radiative impact Poorly modelled Hogan et al. (GRL 2004) Mixed-phase clouds LITE lidar showed more supercooled water in SH than NH Two independent methods from MODIS show the same thing What does CALIPSO show? What is the explanation? How can we model mixed- phase clouds?

Discussion points Is the intention to assimilate cloud radar and lidar directly? –If so, are fast radar and lidar forward models of interest? If retrievals are to be assimilated, what variables are needed? Do you need error covariances, averaging kernels and information content? Straightforward to calculate, but: –Complicated to store (state vector is a different size for each profile) –Increases the data volume by an order of magnitude What are best diagnostics for assessing model performance? –Means, PDFs, skill scores… ECMWF model variables are required by retrievals –What is the error of model temperature, pressure and humidity?

CloudSat simulator (Bodas et al) Simulated radar reflectivity from sub-grid model Simulated radar reflectivity averaged to model grid –How would this look with high-res model? Observed CloudSat radar reflectivity

Example of mid-Pacific convection CloudSat radar CALIPSO lidar MODIS 11 micron channel Time since start of orbit (s) Height (km) Cirrus detected only by lidar Mid-level liquid clouds Deep convection penetrated only by radar Retrieved extinction (m -1 )

Supercooled water in models A year of data from the Met Office and ECMWF –Easy to calculate occurrence of supercooled water with > 0.7 Prognostic ice and liquid+vapour variables Prognostic cloud water: ice/liquid diagnosed from temperature