DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,

Slides:



Advertisements
Similar presentations
Gareth Berry University of Reading, UK. Evaluation of some daytime boundary layer forecast techniques. Undergraduate project presentation.
Advertisements

© Crown copyright Met Office Met Office Experiences with Convection Permitting Models Humphrey Lean Reading, UK Nowcasting Workshop,
Introduction Irina Surface layer and surface fluxes Anton
What’s quasi-equilibrium all about?
The University of Reading Helen Dacre AGU Dec 2008 Boundary Layer Ventilation by Convection and Coastal Processes Helen Dacre, Sue Gray, Stephen Belcher.
Vertical distribution of ash at source Time-height plots of mass concentration at Chilbolton. The height above the summit into which ash particles are.
Robin Hogan Alan Grant, Ewan O’Connor,
Ewan OConnor, Anthony Illingworth, Robin Hogan and the Cloudnet team Cloudnet.
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
Proposed new uses for the Ceilometer Network
Dynamical and Microphysical Evolution of Convective Storms (DYMECS) University: Robin Hogan, Bob Plant, Thorwald Stein, Kirsty Hanley, John Nicol Met Office:
DYnamical and Microphysical Evolution of Convective Storms Thorwald Stein, Robin Hogan, John Nicol DYMECS.
Convection plans Alison Stirling.
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
Convection Initiative discussion points What info do parametrizations & 1.5-km forecasts need? –Initiation mechanism, time-resolved cell size & updraft.
Some questions on convection that could be addressed through another UK field program centered at Chilbolton Dan Kirshbaum 1.
R. Forbes, 17 Nov 09 ECMWF Clouds and Radiation University of Reading ECMWF Cloud and Radiation Parametrization: Recent Activities Richard Forbes, Maike.
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
DYnamical and Microphysical Evolution of Convective Storms Thorwald Stein, Robin Hogan, John Nicol DYMECS.
Robin Hogan, Andrew Barrett
Radar/lidar observations of boundary layer clouds
Robin Hogan, Julien Delanoë, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Evaluating and improving the representation of clouds.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Clouds processes and climate
Robin Hogan & Anthony Illingworth Department of Meteorology University of Reading UK Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities.
Robin Hogan (with input from Anthony Illingworth, Keith Shine, Tony Slingo and Richard Allan) Clouds and climate.
Robin Hogan Ewan OConnor Anthony Illingworth Department of Meteorology, University of Reading UK PDFs of humidity and cloud water content from Raman lidar.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
Moisture Transport in Baroclinic Waves Ian Boutle a, Stephen Belcher a, Bob Plant a Bob Beare b, Andy Brown c 24 April 2014.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
1 00/XXXX © Crown copyright Carol Roadnight, Peter Clark Met Office, JCMM Halliwell Representing convection in convective scale NWP models : An idealised.
DYnamical and Microphysical Evolution of Convective Storms Thorwald Stein, Robin Hogan, John Nicol DYMECS.
To perform statistical analyses of observations from dropsondes, microphysical imaging probes, and coordinated NOAA P-3 and NASA ER-2 Doppler radars To.
WRF Physics Options Jimy Dudhia. diff_opt=1 2 nd order diffusion on model levels Constant coefficients (khdif and kvdif) km_opt ignored.
1. The problem of mixed-phase clouds All models except DWD underestimate mid-level cloud –Some have separate “radiatively inactive” snow (ECMWF, DWD) –Met.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology The Effect of Turbulence on Cloud Microstructure,
Hector simulation We found simulation largely depending on: Model initialization scheme Lateral boundary conditions Physical processes represented in the.
Initial 3D isotropic fractal field An initial fractal cloud-like field can be generated by essentially performing an inverse 3D Fourier Transform on the.
The DYMECS project A statistical approach for the evaluation of convective storms in high-resolution models Thorwald Stein, Robin Hogan, John Nicol, Robert.
Chris Birchfield Atmospheric Sciences, Spanish minor.
© Crown copyright Met Office Experiences with a 100m version of the Unified Model over an Urban Area Humphrey Lean Reading, UK WWOSC.
Click to add Text © Crown copyright Met Office Statistical Analysis of UK Convection and its representation in high resolution NWP Models Humphrey Lean,
13 June, 2013 Dymecs Meeting, Reading Tropical convective organisation in the UM Chris Holloway NCAS-Climate, Dept. of Meteorology, University of Reading.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
© Crown copyright Met Office High resolution COPE simulations Kirsty Hanley, Humphrey Lean UK.
© Crown copyright Met Office High resolution COPE simulations Kirsty Hanley, Humphrey Lean UK.
Evaluating forecasts of the evolution of the cloudy boundary layer using radar and lidar observations Andrew Barrett, Robin Hogan and Ewan O’Connor Submitted.
RICO Modeling Studies Group interests RICO data in support of studies.
Reading, 13 June 2013 Workshop on Convection in the high resolution Met Office models.
Evaluation of three-dimensional cloud structures in DYMECS Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean.
DYMECS The evolution of thunderstorms in the Met Office Unified Model Kirsty Hanley Robin Hogan John Nicol Robert Plant Thorwald Stein Emilie Carter Carol.
Chasing April Showers Convective storms on Wednesday 11 th April, 2012 WCD Friday 4 th May, 2012 Thorwald Stein DYMECS research assistant *Not by running.
© Crown copyright Met Office Convection Permitting Modelling Humphrey Lean et al. Reading, UK Leeds April 2014.
The evaluation of updrafts in the Unified Model using single-Doppler radar measurements Nicol JC a, Hogan RJ b, Stein THM b, Hanley KE c, Lean HW c, Plant.
Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes.
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
Characteristics of precipitating convection in the UM at Δx≈200m-2km
Shifting the diurnal cycle of parameterized deep convection over land
Development of Assimilation Methods for Polarimetric Radar Data
GEORGE H. BRYAN AND HUGH MORRISON
Seamless turbulence parametrization across model resolutions
The DYMECS project A statistical approach for the evaluation of convective storms in high-resolution models Thorwald Stein, Robin Hogan, John Nicol, Robert.
Convective Scale Modelling Humphrey Lean et. al
The three-dimensional structure of convective storms
Group interests RICO data required
Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Speaker: Huan Chen Professor:
Scott A. Braun, 2002: Mon. Wea. Rev.,130,
Group interests RICO data in support of studies
Case Study: Evaluation of PBL Depth in an Erroneous HRRR forecast for CI Keenan Eure.
Presentation transcript:

DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein, Kirsty Hanley, John Nicol Met Office: Humphrey Lean, Carol Halliwell

The DYMECS approach: beyond case studies NIMROD radar network rainfall Track storms in real time and automatically scan Chilbolton radar Derive properties of hundreds of storms on ~40 days: Vertical velocity 3D structure Rain & hail Ice water content TKE & dissipation rate Evaluate these properties in model varying: Resolution Microphysics scheme Sub-grid turbulence parametrization

Nimrod radar1.5-km model 500-m model200-m model Kirsty Hanley

Nimrod radar1.5-km model 500-m model200-m model Kirsty Hanley Too many Too few

Storm size distribution Smagorinsky mixing length plays a key role in determining number of small storms 1.5-km model 500-m model Kirsty Hanley

20 April Aug m model best 500-m model best 200-m model best 1.5-km model best Kirsty Hanley

Vertical profile First 60% of storms by cloud- top height Next 30% Top 10% Thorwald Stein Ice density too low? Higher reflectivity core Observations 1.5-km model 1.5-km + graupel

Vertical profile First 60% of storms by cloud- top height Next 30% Top 10% Observations 200-m model 500-m model Thorwald Stein

Estimation of vertical velocities from continuity Vertical cross-sections (RHIs) are typically made at low elevations (e.g. < 10 °) Radial velocities provide accurate estimate of the horizontal winds Assume vertical winds are zero at the surface Working upwards, changes in horizontal winds at a given level increment the vertical wind up to that point Must account for density change with height John Nicol Key uncertainty in models is convective updraft intensity and spatial scale Can we estimate updrafts from Doppler wind sufficiently well to characterize the distribution of intensity and spatial scale?

Vertical wind (m/s) Retrieved vertical wind (m/s) Retrieval error (m/s) Reflectivity (dBZ) Horizontal wind (m/s) Estimating retrieval errors from the Unified Model John Nicol

dBZ u (m/s) w (m/s) 12:45 07 August :37 07 August 2011 John Nicol

Scientific and modelling questions What is magnitude and scale of convective updrafts? How do two observational methods compare to model at various resolutions? What model configurations lead to the best 3D storm structure and evolution, and why? How good are predictions of hail occurrence and turbulence? How is boundary-layer grey zone best treated at high resolution, and what is the role of the Smagorinsky length scale? Does BL scheme diffuse away gust fronts necessary to capture triggering of daughter cells and if so how can this be corrected? Can models distinguish single cells, multi-cell storms & squall lines, and the location of daughter cells formed by gust fronts? What are the characteristics common to quasi-stationary storms in the UK from the large DYMECS database? Can we diagnose parameters that should be used in convection schemes from observations?

The blob analysis Met Office 1.5 km model NIMROD radar network rainfall Rain rate (mm h -1 ) Radar observations Forecast plan-view of rainfall Does the surface rain rate look right in a couple of cases? If not, how do we fix the model? on 26 August 2011

WP 3. Derive properties from radar scans Cloud area, cloud-top height versus time into cell lifecycle Surface rain rate, drop size, hail intensity from polarization variables (Hogan 2007) Ice water content using radar reflectivity and temperature (Hogan et al. 2006) TKE and dissipation rate from Doppler spectral width (Chapman and Browning 2001) Updrafts…

Updrafts? Hogan et al. (2008) –Track features in radial velocity from scan to scan Chapman & Browning (1998) –In quasi-2D features (e.g. squall lines) can assume continuity to estimate vertical velocity

WP4. Statistical analysis of observed storms Alan Grant (2007) suggested the following testable relationships in convection parameterization: where up is the mean in-cloud dissipation rate w up is the cumulus vertical velocity scale L up is the horizontal length scale of the updrafts A up is the fractional area of some horizontal domain occupied by cumulus updrafts (equal to the cloud-base mass flux in a convection scheme divided by w up ) D cld is the depth of the convective cloud layer CAPE is the convective available potential energy

WP6. Modelling case studies & sensitivity tests We use MONSooN so can share jobs between University and Met Office Horizontal resolution –Down to 100 m; model currently predicts smaller cells as resolution increases Sub-grid mixing scheme –Test 2D & 3D Smagorinsky, prognostic TKE and a stochastic backscatter scheme –Evaluate rate of change of cloud size with time, and TKE Microphysical scheme –Test single- and double-moment liquid, rain, ice, snow, graupel and possibly hail, as well as interactive aerosol-cloud microphysics