Robin Hogan & Anthony Illingworth Department of Meteorology University of Reading UK Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities.

Slides:



Advertisements
Similar presentations
Robin Hogan, Chris Westbrook University of Reading Lin Tian NASA Goddard Space Flight Center Phil Brown Met Office Why it is important that ice particles.
Advertisements

Lidar observations of mixed-phase clouds Robin Hogan, Anthony Illingworth, Ewan OConnor & Mukunda Dev Behera University of Reading UK Overview Enhanced.
Ewan OConnor, Anthony Illingworth, Robin Hogan and the Cloudnet team Cloudnet.
Quantifying sub-grid cloud structure and representing it GCMs
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
Proposed new uses for the Ceilometer Network
Dynamical and Microphysical Evolution of Convective Storms (DYMECS) University: Robin Hogan, Bob Plant, Thorwald Stein, Kirsty Hanley, John Nicol Met Office:
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
1 Drizzle rates inferred from CloudSat & CALIPSO compared to their representation in the operational Met Office and ECMWF forecast models. Lee Hawkness-Smith.
© Crown copyright Met Office Radiation Parametrisation Current development work with the UM James Manners, visit to Reading University on 19 th February.
Convection Initiative discussion points What info do parametrizations & 1.5-km forecasts need? –Initiation mechanism, time-resolved cell size & updraft.
19 February The Tripleclouds scheme Jon Shonk and Robin Hogan.
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Robin Hogan, Andrew Barrett
Radar/lidar observations of boundary layer clouds
Robin Hogan, Julien Delanoë, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Evaluating and improving the representation of clouds.
Robin Hogan & Julien Delanoe
Robin Hogan, Malcolm Brooks, Anthony Illingworth
Joint ECMWF-University meeting on interpreting data from spaceborne radar and lidar: AGENDA 09:30 Introduction University of Reading activities 09:35 Robin.
Blind tests of radar/lidar retrievals: Assessment of errors in terms of radiative flux profiles Malcolm Brooks Robin Hogan and Anthony Illingworth David.
Robin Hogan Anthony Illingworth Ewan OConnor Nicolas Gaussiat Malcolm Brooks University of Reading Cloudnet products available from Chilbolton.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
Robin Hogan Department of Meteorology University of Reading Cloud and Climate Studies using the Chilbolton Observatory.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Robin Hogan, Chris Westbrook University of Reading Lin Tian NASA Goddard Space Flight Center Phil Brown Met Office The importance of ice particle shape.
Use of ground-based radar and lidar to evaluate model clouds
CloudSat! On 28 th April the first spaceborne cloud radar was launched It joins Aqua: MODIS, CERES, AIRS, AMSU radiometers.
Robin Hogan (with input from Anthony Illingworth, Keith Shine, Tony Slingo and Richard Allan) Clouds and climate.
Robin Hogan Ewan OConnor Anthony Illingworth Department of Meteorology, University of Reading UK PDFs of humidity and cloud water content from Raman lidar.
Integrated lidar backscatter: Quantifying the occurrence of supercooled water and specular reflection Robin Hogan and Anthony Illingworth Enhanced algorithm.
Robin Hogan Ewan OConnor Damian Wilson Malcolm Brooks Evaluation statistics of cloud fraction and water content.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
Department of Meteorology, University of Reading, UK
Robin Hogan Ewan OConnor Anthony Illingworth Nicolas Gaussiat Malcolm Brooks Cloudnet Evaluating the clouds in European forecast models.
Robin Hogan Ewan OConnor Cloudnet level 3 products.
Modelling radar and lidar multiple scattering Modelling radar and lidar multiple scattering Robin Hogan The CloudSat radar and the Calipso lidar were launched.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
Cloud Radar in Space: CloudSat While TRMM has been a successful precipitation radar, its dBZ minimum detectable signal does not allow views of light.
Exploiting multiple scattering in CALIPSO measurements to retrieve liquid cloud properties Nicola Pounder, Robin Hogan, Lee Hawkness-Smith, Andrew Barrett.
Nicolas Gaussiat and Robin Hogan Progress meeting 4 – Toulouse – Oct 2003 Dual wavelength retrieval of LWC and IWC at Chilbolton.
3D Radiative Transfer in Cloudy Atmospheres: Diffusion Approximation and Monte Carlo Simulation for Thermal Emission K. N. Liou, Y. Chen, and Y. Gu Department.
Equation for the microwave backscatter cross section of aggregate snowflakes using the Self-Similar Rayleigh- Gans Approximation Robin Hogan ECMWF and.
© Crown copyright Met Office Radiation developments Latest work on the radiation code in the Unified Model James Manners, Reading collaboration meeting.
Robin Hogan Anthony Illingworth Marion Mittermaier Ice water content from radar reflectivity factor and temperature.
Remote sensing of Stratocumulus using radar/lidar synergy Ewan O’Connor, Anthony Illingworth & Robin Hogan University of Reading.
Initial 3D isotropic fractal field An initial fractal cloud-like field can be generated by essentially performing an inverse 3D Fourier Transform on the.
The DYMECS project A statistical approach for the evaluation of convective storms in high-resolution models Thorwald Stein, Robin Hogan, John Nicol, Robert.
Horizontal Distribution of Ice and Water in Arctic Stratus Clouds During MPACE Michael Poellot, David Brown – University of North Dakota Greg McFarquhar,
Gerd-Jan van Zadelhoff & Dave Donovan Comparing ice-cloud microphysical properties using Cloudnet & ARM data.
Characterization of Arctic Mixed-Phase Cloudy Boundary Layers with the Adiabatic Assumption Paquita Zuidema*, Janet Intrieri, Sergey Matrosov, Matthew.
LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
 Comparison of predicted radar reflectivity (Z) with observations, such as e.g. from the W-band ARM Cloud Radar (WACR), is an essential part of verifying.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
Anthony Illingworth, Robin Hogan, Ewan O’Connor, U of Reading, UK Nicolas Gaussiat Damian Wilson, Malcolm Brooks Met Office, UK Dominique Bouniol, Alain.
CBH statistics for the Provisional Review Curtis Seaman, Yoo-Jeong Noh, Steve Miller and Dan Lindsey CIRA/Colorado State University 12/27/2013.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
Robin Hogan Anthony Illingworth Marion Mittermaier Ice water content from radar reflectivity factor and temperature.
© Crown copyright Met Office Systematic Biases in Microphysics: observations and parametrization Ian Boutle, Steven Abel, Peter Hill, Cyril Morcrette QJ.
The evaluation of updrafts in the Unified Model using single-Doppler radar measurements Nicol JC a, Hogan RJ b, Stein THM b, Hanley KE c, Lean HW c, Plant.
Investigating Cloud Inhomogeneity using CRM simulations.
Evaluation of a scheme representing cloud inhomogeneous structure in the Australian Community Climate and Earth System Simulator (ACCESS)
The DYMECS project A statistical approach for the evaluation of convective storms in high-resolution models Thorwald Stein, Robin Hogan, John Nicol, Robert.
Effects of 3D radiation on cloud evolution
The three-dimensional structure of convective storms
Quantitative verification of cloud fraction forecasts
John Marsham and Steven Dobbie
The radiative properties of inhomogeneous cirrus clouds
Effects of 3D radiation on cloud evolution
Inhomogeneous radiative properties of cirrus clouds
Presentation transcript:

Robin Hogan & Anthony Illingworth Department of Meteorology University of Reading UK Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities using cloud radar data

Relationship between optical depth and emissivity Ice cloud inhomogeneity Cloud infrared properties depend on emissivity Most models assume cloud is horizontally uniform In analogy to Sc albedo, the emissivity of non-uniform clouds is less than for uniform clouds Pomroy and Illingworth (GRL 2000) Lower emissivityHigher emissivity But for ice clouds the vertical decorrelation is also important

Cloud radar and ice clouds Cloud radars can estimate ice parameters from empirical relationships with radar reflectivity, Z (liquid clouds more difficult due to drizzle). Can evaluate gridbox-mean IWC in models, but newer models are also beginning to represent sub-grid structure Here we use radar to estimate gridbox variances and vertical correlation of inhomogeneities We use 94-GHz Galileo radar that operates continuously from Chilbolton in Southern England

Fractional variance We quantify the horizontal inhomogeneity of ice water content (IWC) and ice extinction coefficient () using the fractional variance: Barker et al. (1996) used a gamma distribution to represent the PDF of stratocumulus optical depth: Their width parameter is actually the reciprocal of the fractional variance: for p( ) we have = 1/f.

Deriving extinction & IWC from radar Regression in log-log space provides best estimate of log from a measurement of logZ (or dBZ) log Z r log But by definition, the slope of the regression line is r log / log Z (where r is the correlation coefficient), so f is underestimated by a factor of r Use ice size spectra measured by the Met-Office C-130 aircraft during EUCREX to calculate cloud and radar parameters: = Z IWC =0.155 Z 0.693

For inhomogeneity use the SD line The standard deviation line has slope of log / log Z We calculate SD line for each horizontal aircraft run Mean expression = Z (note exponent) Spread of slopes indicates error in retrieved f & f IWC log Z log

Cirrus fallstreaks and wind shear This is a test … Low shear High shear Unified Model

Vertical decorrelation: effect of shear Low shear region (above 6.9 km) for 50 km boxes: –decorrelation length = 0.69 km –IWC frac. variance f IWC = 0.29 High shear region (below 6.9 km) for 50 km boxes: –decorrelation length = 0.35 km –IWC frac. variance f IWC = 0.10

Ice water content distributions PDFs of IWC within a model gridbox can often, but not always, be fitted by a lognormal or gamma distribution Fractional variance tends to be higher near cloud boundaries Near cloud baseCloud interior Near cloud top

Results from 18 months of radar data Variance and decorrelation increase with gridbox size –Shear makes overlap of inhomogeneities more random, thereby reducing the vertical decorrelation length –Shear increases mixing, reducing variance of ice water content –Can derive expressions such as log 10 f IWC = 0.3log 10 d s Fractional variance of IWCVertical decorrelation length Increasing shear

Distance from cloud boundaries Can refine this further: consider shear <10 ms -1 /km –Variance greatest at cloud boundaries, at its least around a third of the distance up from cloud base –Thicker clouds tend to have lower fractional variance –Can represent this reasonably well analytically

Conclusions We have quantified how the fractional variances of IWC and extinction, and the vertical decorrelation, depend on model gridbox site, shear, and distance from cloud boundaries Full expressions may be found in Hogan and Illingworth (JAS, March 2003) –Note that these expressions work well in the mean (i.e. OK for climate) but the instantaneous differences in variance are around a factor of two Outstanding questions: –Our results are for midlatitudes: what about tropical cirrus? –Our results for fully cloudy gridboxes: How should the inhomogeneity of partially cloudy gridboxes be treated? –What other parameters affect inhomogeneity?