Variational cloud retrievals from radar, lidar and radiometers

Slides:



Advertisements
Similar presentations
Estimation of clouds in atmospheric models Tomislava Vukicevic CIRA/CSU and PAOS/CU.
Advertisements

Fast lidar & radar multiple-scattering models for cloud retrievals Robin Hogan (University of Reading) Alessandro Battaglia (University of Bonn) How can.
Robin Hogan, Julien Delanoe and Nicola Pounder University of Reading Towards unified retrievals of clouds, precipitation and aerosols.
Synergistic cloud retrievals from radar, lidar and radiometers
Radar/lidar/radiometer retrievals of ice clouds from the A-train
Lidar observations of mixed-phase clouds Robin Hogan, Anthony Illingworth, Ewan OConnor & Mukunda Dev Behera University of Reading UK Overview Enhanced.
Robin Hogan, Nicola Pounder, Chris Westbrook University of Reading, UK
Robin Hogan, Chris Westbrook University of Reading, UK Alessandro Battaglia University of Leicester, UK Fast forward modelling of radar and lidar depolarization.
Fast reverse-mode automatic differentiation using expression templates in C++ Robin Hogan University of Reading.
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
1 All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Liquid water path from microwave radiometers.
Proposed new uses for the Ceilometer Network
How to distinguish rain from hail using radar: A cunning, variational method Robin Hogan Last Minute Productions Inc.
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Robin Hogan Julien Delanoë Nicola Pounder University of Reading Synergistic cloud, aerosol and precipitation products Progress so far in RATEC.
Robin Hogan, Nicola Pounder University of Reading, UK
Robin Hogan, University of Reading
Radar/lidar observations of boundary layer clouds
Robin Hogan, Julien Delanoë, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Evaluating and improving the representation of clouds.
Robin Hogan & Julien Delanoe
Robin Hogan, Malcolm Brooks, Anthony Illingworth
Joint ECMWF-University meeting on interpreting data from spaceborne radar and lidar: AGENDA 09:30 Introduction University of Reading activities 09:35 Robin.
Robin Hogan Julien Delanoë Nicola Pounder Chris Westbrook
Modelling radar and lidar multiple scattering Robin Hogan
Blind tests of radar/lidar retrievals: Assessment of errors in terms of radiative flux profiles Malcolm Brooks Robin Hogan and Anthony Illingworth David.
Towards “unified” retrievals of cloud, precipitation and aerosol from combined radar, lidar and radiometer observations Robin Hogan, Julien Delanoë, Nicola.
Robin Hogan Department of Meteorology University of Reading Cloud and Climate Studies using the Chilbolton Observatory.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Robin Hogan Julien Delanoe Department of Meteorology, University of Reading, UK Towards unified radar/lidar/radiometer retrievals for cloud radiation studies.
Use of ground-based radar and lidar to evaluate model clouds
Integrated lidar backscatter: Quantifying the occurrence of supercooled water and specular reflection Robin Hogan and Anthony Illingworth Enhanced algorithm.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
Robin Hogan A variational scheme for retrieving rainfall rate and hail intensity.
Variational methods for retrieving cloud, rain and hail properties combining radar, lidar and radiometers Robin Hogan Julien Delanoe Department of Meteorology,
What can we learn about clouds and their representation in models from the synergy of radar and lidar observations? Robin Hogan, Julien Delanoë, Nicky.
Modelling radar and lidar multiple scattering Modelling radar and lidar multiple scattering Robin Hogan The CloudSat radar and the Calipso lidar were launched.
Variational methods for retrieving cloud, rain and hail properties combining radar, lidar and radiometers Robin Hogan Julien Delanoe Department of Meteorology,
Integrated Profiling at the AMF
Cloud Radar in Space: CloudSat While TRMM has been a successful precipitation radar, its dBZ minimum detectable signal does not allow views of light.
A Methodology for Simultaneous Retrieval of Ice and Liquid Water Cloud Properties O. Sourdeval 1, L. C.-Labonnote 2, A. J. Baran 3, G. Brogniez 2 1 – Institute.
Application of Cloudnet data in the validation of SCIAMACHY cloud height products Ping Wang Piet Stammes KNMI, De Bilt, The Netherlands CESAR Science day,
Exploiting multiple scattering in CALIPSO measurements to retrieve liquid cloud properties Nicola Pounder, Robin Hogan, Lee Hawkness-Smith, Andrew Barrett.
Equation for the microwave backscatter cross section of aggregate snowflakes using the Self-Similar Rayleigh- Gans Approximation Robin Hogan ECMWF and.
EarthCARE: The next step forward in global measurements of clouds, aerosols, precipitation & radiation Robin Hogan ECMWF & University of Reading With input.
ESA Explorer mission EarthCARE: Earth Clouds, Aerosols and Radiation Explorer Joint ESA/JAXA mission Launch 2016 Budget 700 MEuro.
1. The problem of mixed-phase clouds All models except DWD underestimate mid-level cloud –Some have separate “radiatively inactive” snow (ECMWF, DWD) –Met.
CPI International UV/Vis Limb Workshop Bremen, April Development of Generalized Limb Scattering Retrieval Algorithms Jerry Lumpe & Ed Cólon.
Remote sensing of Stratocumulus using radar/lidar synergy Ewan O’Connor, Anthony Illingworth & Robin Hogan University of Reading.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
REMOTE SENSING & THE INVERSE PROBLEM “Remote sensing is the science and art of obtaining information about an object, area, or phenomenon through the analysis.
VARSY Final Presentation ATLID-CPR-MSI Clouds, Aerosols and Precipitation “Best Estimate” Robin Hogan, Nicola Pounder, Brian Tse, Chris Westbrook University.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
EarthCARE and snow Robin Hogan University of Reading.
Page 1© Crown copyright 2004 Cirrus Measurements during the EAQUATE Campaign C. Lee, A.J. Baran, P.N. Francis, M.D. Glew, S.M. Newman and J.P. Taylor.
Depolarization lidar for water cloud remote sensing 1.Background MS and MC 2.Short overview of the MC model used in this work 3.Depol-lidar for Water Cld.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Southern Ocean cloud biases in ACCESS.
Lidar+Radar ice cloud remote sensing within CLOUDNET. D.Donovan, G-J Zadelhof (KNMI) and the CLOUDNET team With outside contributions from… Z. Wang (NASA/GSFC)
Robin Hogan Ewan O’Connor The Instrument Synergy/ Target Categorization product.
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
An Introduction to Optimal Estimation Theory Chris O´Dell AT652 Fall 2013.
Cloud and precipitation best estimate… …and things I don’t know that I want to know Robin Hogan University of Reading.
Retrieval of Cloud Phase and Ice Crystal Habit From Satellite Data Sally McFarlane, Roger Marchand*, and Thomas Ackerman Pacific Northwest National Laboratory.
Challenges and Strategies for Combined Active/Passive Precipitation Retrievals S. Joseph Munchak 1, W. S. Olson 1,2, M. Grecu 1,3 1: NASA Goddard Space.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
12 April 2013 VARSY progress meeting Robin Hogan and Nicola Pounder (University of Reading)
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
Slide 1 Robin Hogan, APRIL-CLARA-DORSY meeting 2016 ©ECMWF Towards a fast shortwave radiance forward model for exploiting MSI measurements Robin Hogan.
EarthCARE and snow Robin Hogan, Chris Westbrook University of Reading
Presentation transcript:

Variational cloud retrievals from radar, lidar and radiometers Robin Hogan Julien Delanoë Nicola Pounder University of Reading

Introduction Best estimate of the atmospheric state from instrument synergy Use a variational framework / optimal estimation theory Some important measurements are integral constraints E.g. microwave, infrared and visible radiances Affected by all cloud types in profile, plus aerosol and precipitation Hence need to retrieve different particle types simultaneously Funded by ESA and NERC to develop unified retrieval algorithm For application to EarthCARE Will be tested on ground-based, airborne and A-train data Algorithm components Target classification input State variables Minimization techniques: Gauss-Newton vs. Gradient-Descent Status of forward models and their adjoints Progress with individual target types Ice clouds Liquid clouds

Ingredients developed before In progress Not yet developed Retrieval framework 1. New ray of data: define state vector Use classification to specify variables describing each species at each gate Ice: extinction coefficient , N0’, lidar extinction-to-backscatter ratio Liquid: extinction coefficient and number concentration Rain: rain rate and mean drop diameter Aerosol: extinction coefficient, particle size and lidar ratio 3a. Radar model Including surface return and multiple scattering 3b. Lidar model Including HSRL channels and multiple scattering 3c. Radiance model Solar and IR channels 4. Compare to observations Check for convergence 6. Iteration method Derive a new state vector Either Gauss-Newton or quasi-Newton scheme 3. Forward model Not converged Converged Proceed to next ray of data 2. Convert state vector to radar-lidar resolution Often the state vector will contain a low resolution description of the profile 5. Convert Jacobian/adjoint to state-vector resolution Initially will be at the radar-lidar resolution 7. Calculate retrieval error Error covariances and averaging kernel Ingredients developed before In progress Not yet developed

Target classification In Cloudnet we used radar and lidar to provide a detailed discrimination of target types (Illingworth et al. 2007): A similar approach has been used by Julien Delanoe on CloudSat and Calipso using the one-instrument products as a starting point: More detailed classifications could distinguish “warm” and “cold” rain (implying different size distributions) and different aerosol types

Example from the AMF in Niamey 94-GHz radar reflectivity Observations 532-nm lidar backscatter Forward model at final iteration 94-GHz radar reflectivity 532-nm lidar backscatter

Results: radar+lidar only Retrievals in regions where radar or lidar detects the cloud Retrieved visible extinction coefficient Retrieved effective radius Large error where only one instrument detects the cloud Retrieval error in ln(extinction)

Results: radar, lidar, SEVERI radiances Delanoe & Hogan (JGR 2008) Retrieved visible extinction coefficient TOA radiances increase retrieved optical depth and decrease particle size near cloud top Retrieved effective radius Cloud-top error greatly reduced Retrieval error in ln(extinction)

Unified algorithm: state variables Proposed list of retrieved variables held in the state vector x State variable Representation with height / constraint A-priori Ice clouds and snow Visible extinction coefficient One variable per pixel with smoothness constraint None Number conc. parameter Cubic spline basis functions with vertical correlation Temperature dependent Lidar extinction-to-backscatter ratio Cubic spline basis functions 20 sr Riming factor Likely a single value per profile 1 Liquid clouds Liquid water content One variable per pixel but with gradient constraint Droplet number concentration One value per liquid layer Rain Rain rate Cubic spline basis functions with flatness constraint Normalized number conc. Nw One value per profile Dependent on whether from melting ice or coallescence Melting-layer thickness scaling factor Aerosols Extinction coefficient One value per aerosol layer identified Climatological type depending on region Ice clouds follows Delanoe & Hogan (2008); Snow & riming in convective clouds needs to be added Liquid clouds currently being tackled Basic rain to be added shortly; Full representation later Basic aerosols to be added shortly; Full representation via collaboration?

The cost function + Smoothness constraints The essence of the method is to find the state vector x that minimizes a cost function: Each observation yi is weighted by the inverse of its error variance The forward model H(x) predicts the observations from the state vector x Some elements of x are constrained by an a priori estimate This term penalizes curvature in the extinction profile + Smoothness constraints

Gauss-Newton method See Rodgers’ book (p85): write the cost function in matrix form: Define its gradient (a vector): …and its second derivative (a matrix): Approximate J as quadratic and apply this: Advantage: rapid convergence (instant convergence for linear problems) Another advantage: get the error covariance of the solution “for free” Disadvantage: need the Jacobian matrix of every forward model: can be expensive for larger problems

Gradient descent methods Just use gradient information: Advantage: we don’t need to calculate the Jacobian so forward model is cheaper! Disadvantage: more iterations needed since we don’t know curvature of J(x) Use a quasi-Newton method to get the search direction, such as BFGS used by ECMWF: builds up an approximate form of the second derivative to get improved convergence Scales well for large x Disadvantage: poorer estimate of the error at the end Why don’t we need the Jacobian H? The “adjoint” of a forward model takes as input the vector {.} and outputs the vector Jobs without needing to calculate the matrix H on the way Adjoint can be coded to be only ~3 times slower than original forward model Tricky coding for newcomers, although some automatic code generators exist Typical convergence behaviour

Forward model components From state vector x to forward modelled observations H(x)... Ice & snow Liquid cloud Rain Aerosol x Jacobian matrix H=y/x Ice/radar Liquid/radar Rain/radar Ice/lidar Liquid/lidar Rain/lidar Aerosol/lidar Ice/radiometer Liquid/radiometer Rain/radiometer Aerosol/radiometer Lookup tables to obtain profiles of extinction, scattering & backscatter coefficients, asymmetry factor Computationally expensive matrix-matrix multiplications: the most expensive part of the entire algorithm Radar scattering profile Lidar scattering profile Radiometer scattering profile Sum the contributions from each constituent Gradient of radar measurements with respect to radar inputs Gradient of lidar measurements with respect to lidar inputs Gradient of radiometer measurements with respect to radiometer inputs Jacobian part of radiative transfer models Radar forward modelled obs Lidar forward modelled obs Radiometer forward modelled obs H(x) Radiative transfer models

Equivalent adjoint method From state vector x to forward modelled observations H(x)... Ice & snow Liquid cloud Rain Aerosol x Gradient of cost function (vector) J/x=HTy* Ice/radar Liquid/radar Rain/radar Ice/lidar Liquid/lidar Rain/lidar Aerosol/lidar Ice/radiometer Liquid/radiometer Rain/radiometer Aerosol/radiometer Lookup tables to obtain profiles of extinction, scattering & backscatter coefficients, asymmetry factor Vector-matrix multiplications: around the same cost as the original forward operations Radar scattering profile Lidar scattering profile Radiometer scattering profile Sum the contributions from each constituent Radar forward modelled obs Lidar forward modelled obs Radiometer forward modelled obs H(x) Radiative transfer models Adjoint of radar model (vector) Adjoint of lidar model (vector) Adjoint of radiometer model Adjoint of radiative transfer models

Scattering models First part of a forward model is the scattering and fall-speed model Same methods typically used for all radiometer and lidar channels Radar and Doppler model uses another set of methods Graupel and melting ice still uncertain; but normal ice is decided... Particle type Radar (3.2 mm) Radar Doppler Thermal IR, Solar, UV Aerosol Aerosol not detected by radar Mie theory, Highwood refractive index Liquid droplets Mie theory Beard (1976) Rain drops T-matrix: Brandes et al. (2002) shapes Ice cloud particles T-matrix (Hogan et al. 2010) Westbrook & Heymsfield Baran (2004) Graupel and hail TBD Melting ice Wu & Wang (1991)

Radiative transfer forward models Computational cost can scale with number of points describing vertical profile N; we can cope with an N2 dependence but not N3 Radar/lidar model Applications Speed Jacobian Adjoint Single scattering: b’=b exp(-2t) Radar & lidar, no multiple scattering N N2 Platt’s approximation b’=b exp(-2ht) Lidar, ice only, crude multiple scattering Photon Variance-Covariance (PVC) method (Hogan 2006, 2008) Lidar, ice only, small-angle multiple scattering N or N2 Time-Dependent Two-Stream (TDTS) method (Hogan and Battaglia 2008) Lidar & radar, wide-angle multiple scattering N3 Depolarization capability for TDTS Lidar & radar depol with multiple scattering Lidar uses PVC+TDTS (N2), radar uses single-scattering+TDTS (N2) Jacobian of TDTS is too expensive: N3 We have recently coded adjoint of multiple scattering models Future work: depolarization forward model with multiple scattering Radiometer model Applications Speed Jacobian Adjoint RTTOV (used at ECMWF & Met Office) Infrared and microwave radiances N Two-stream source function technique (e.g. Delanoe & Hogan 2008) Infrared radiances N2 LIDORT Solar radiances Infrared will probably use RTTOV, solar radiances will use LIDORT Both currently being tested by Julien Delanoe

Gradient constraint A. Slingo, S. Nichols and J. Schmetz, Q. J. R. Met. Soc. 1982 We have a good constraint on the gradient of the state variables with height for: LWC in stratocu (adiabatic profile, particularly near cloud base) Rain rate (fast falling so little variation with height expected) Not suitable for the usual “a priori” constraint Solution: add an extra term to the cost function to penalize deviations from gradient c:

Example in liquid clouds Using simulated observations: Triangular cloud observed by a 1- or 2-field-of-view lidar Retrieval uses Levenberg-Marquardt minimization with Hogan and Battaglia (2008) model for lidar multiple scattering Two FOVs: very good performance One 10-m footprint: saturates at optical depth=5 One 100-m footprint: multiple scattering helps! One 10-m footprint with gradient constraint: can extrapolate downwards successfully Optical depth=30 Footprint=100m Footprint=600m

Progress Done: C++: object orientation allows code to be completely flexible: observations can be added and removed without needing to keep track of indices to matrices, so same code can be applied to different observing systems Code to generate particle scattering libraries in NetCDF files Adjoint of radar and lidar forward models with multiple scattering and HSRL/Raman support Radar/lidar model interfaced and cost function can be calculated In progress / future work: Interface to BFGS algorithm (e.g. in GNU Scientific Library) Implement ice, liquid, aerosol and rain constituents Interface to radiance models Test on a range of ground-based and spaceborne instruments Test using ECSIM observational simulator Apply to large datasets of ground-based observations…