Efficient Contention Resolution Protocols for Selfish Agents Amos Fiat, Joint work with Yishay Mansour and Uri Nadav Tel-Aviv University, Israel Workshop.

Slides:



Advertisements
Similar presentations
Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes Kenji Obata.
Advertisements

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
Thursday, March 7 Duality 2 – The dual problem, in general – illustrating duality with 2-person 0-sum game theory Handouts: Lecture Notes.
The Weighted Proportional Resource Allocation Milan Vojnović Microsoft Research Joint work with Thành Nguyen Microsoft Research Asia, Beijing, April, 2011.
Uri Zwick Tel Aviv University Simple Stochastic Games Mean Payoff Games Parity Games.
Routing and Congestion Problems in General Networks Presented by Jun Zou CAS 744.
Vincent Conitzer CPS Repeated games Vincent Conitzer
6.896: Topics in Algorithmic Game Theory Lecture 20 Yang Cai.
Bart Jansen 1.  Problem definition  Instance: Connected graph G, positive integer k  Question: Is there a spanning tree for G with at least k leaves?
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Price of Stability Li Jian Fudan University May, 8 th,2007 Introduction to.
1 A Graph-Theoretic Network Security Game M. Mavronicolas , V. Papadopoulou , A. Philippou  and P. Spirakis § University of Cyprus, Cyprus  University.
NON - zero sum games.
Nash’s Theorem Theorem (Nash, 1951): Every finite game (finite number of players, finite number of pure strategies) has at least one mixed-strategy Nash.
Price Of Anarchy: Routing
Fast Convergence of Selfish Re-Routing Eyal Even-Dar, Tel-Aviv University Yishay Mansour, Tel-Aviv University.
Game Theory and Computer Networks: a useful combination? Christos Samaras, COMNET Group, DUTH.
MIT and James Orlin © Game Theory 2-person 0-sum (or constant sum) game theory 2-person game theory (e.g., prisoner’s dilemma)
How Bad is Selfish Routing? By Tim Roughgarden Eva Tardos Presented by Alex Kogan.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
1 Algorithmic Game Theoretic Perspectives in Networking Dr. Liane Lewin-Eytan.
Sogang University ICC Lab Using Game Theory to Analyze Wireless Ad Hoc networks.
Some Research Problems in Algorithmic Game Theory: Incentive compatible communications Envy Free makespan Grad Student Research Seminar Amos Fiat Tel Aviv.
Computational Game Theory
Lecture 1 - Introduction 1.  Introduction to Game Theory  Basic Game Theory Examples  Strategic Games  More Game Theory Examples  Equilibrium  Mixed.
Jointly Optimal Transmission and Probing Strategies for Multichannel Systems Saswati Sarkar University of Pennsylvania Joint work with Sudipto Guha (Upenn)
Beyond selfish routing: Network Formation Games. Network Formation Games NFGs model the various ways in which selfish agents might create/use networks.
1 Computing Nash Equilibrium Presenter: Yishay Mansour.
Selfish Caching in Distributed Systems: A Game-Theoretic Analysis By Byung-Gon Chun et al. UC Berkeley PODC’04.
1 University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Wireless Sensor Networks 7th Lecture Christian Schindelhauer.
Potential games, Congestion games Computational game theory Spring 2010 Adapting slides by Michal Feldman TexPoint fonts used in EMF. Read the TexPoint.
Convergence Time to Nash Equilibria in Load Balancing Eyal Even-Dar, Tel-Aviv University Alex Kesselman, Tel-Aviv University Yishay Mansour, Tel-Aviv University.
A Game-Theoretic Look at Joint Multi-Access, Power and Rate Control Yalin Evren Sagduyu, Anthony Ephremides Objective and Motivation * Objective: Analyze.
DANSS Colloquium By Prof. Danny Dolev Presented by Rica Gonen
Price of Anarchy Bounds Price of Anarchy Convergence Based on Slides by Amir Epstein and by Svetlana Olonetsky Modified/Corrupted by Michal Feldman and.
1 Issues on the border of economics and computation נושאים בגבול כלכלה וחישוב Congestion Games, Potential Games and Price of Anarchy Liad Blumrosen ©
Analysis of Ethernet-like protocols Andrey Lukyanenko University of Kuopio.
Decentralised load balancing in closed and open systems A. J. Ganesh University of Bristol Joint work with S. Lilienthal, D. Manjunath, A. Proutiere and.
Introduction 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A.
Beyond Routing Games: Network (Formation) Games. Network Games (NG) NG model the various ways in which selfish users (i.e., players) strategically interact.
Adaptive CSMA under the SINR Model: Fast convergence using the Bethe Approximation Krishna Jagannathan IIT Madras (Joint work with) Peruru Subrahmanya.
Standard and Extended Form Games A Lesson in Multiagent System Based on Jose Vidal’s book Fundamentals of Multiagent Systems Henry Hexmoor, SIUC.
Moshe Tennenholtz, Aviv Zohar Learning Equilibria in Repeated Congestion Games.
Role of incentives in networks CS 653, Fall 2010.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Lecture 2: two-person non.
Stochastic Multicast with Network Coding Ajay Gopinathan, Zongpeng Li Department of Computer Science University of Calgary ICDCS 2009, June , Montreal.
Connections between Learning Theory, Game Theory, and Optimization Maria Florina (Nina) Balcan Lecture 14, October 7 th 2010.
جلسه یازدهم شبکه های کامپیوتری به نــــــــــــام خدا.
Beyond Routing Games: Network (Formation) Games. Network Games (NG) NG model the various ways in which selfish users (i.e., players) strategically interact.
Network Design and Analysis-----Wang Wenjie Queuing Theory III: 1 © Graduate University, Chinese academy of Sciences. Network Design and Performance Analysis.
7-1 Introduction to Queueing Theory l Components of a queueing system n probability density function (pdf) of interarrival times n pdf of service times.
Network Congestion Games
Information Theory for Mobile Ad-Hoc Networks (ITMANET): The FLoWS Project Competitive Scheduling in Wireless Networks with Correlated Channel State Ozan.
Beyond selfish routing: Network Games. Network Games NGs model the various ways in which selfish agents strategically interact in using a network They.
1 What is Game Theory About? r Analysis of situations where conflict of interests is present r Goal is to prescribe how conflicts can be resolved 2 2 r.
Hedonic Clustering Games Moran Feldman Joint work with: Seffi Naor and Liane Lewin-Eytan.
Non-Preemptive Buffer Management for Latency Sensitive Packets Moran Feldman Technion Seffi Naor Technion.
Stochastic Optimization for Markov Modulated Networks with Application to Delay Constrained Wireless Scheduling Michael J. Neely University of Southern.
Information Theory for Mobile Ad-Hoc Networks (ITMANET): The FLoWS Project Collision Helps! Algebraic Collision Recovery for Wireless Erasure Networks.
The Price of Routing Unsplittable Flow Yossi Azar Joint work with B. Awerbuch and A. Epstein.
A Study of Group-Tree Matching in Large Scale Group Communications
Communication Complexity as a Lower Bound for Learning in Games
Presented By Aaron Roth
Strategic Information Transmission
Throughput-Optimal Broadcast in Dynamic Wireless Networks
Multiagent Systems Repeated Games © Manfred Huber 2018.
The Price of Routing Unsplittable Flow
Information, Incentives, and Mechanism Design
Satellite Packet Communications A UNIT -V Satellite Packet Communications.
Blockchain Mining Games
Presentation transcript:

Efficient Contention Resolution Protocols for Selfish Agents Amos Fiat, Joint work with Yishay Mansour and Uri Nadav Tel-Aviv University, Israel Workshop on Algorithmic Game Theory, University of Warwick, UK

Alright people, listen up. The harder you push, the faster we will all get out of here. Tax deadline Deadlines:

Deadline Analysis: 2 Symmetric Agents / 2 Time slots / Service takes 1 time slot Both agents are aggressive with prob. q, and polite with prob. 1-q Deadline Bart is polite: With probability q Lisa will get service and depart Bart is aggressive: With probability 1-q Lisa will be polite and Bart will be successful Slot #16Slot #17

2 agents 1 Slot before deadline And Samson said, "Let me die with the Philistines!" Judges 16:30 Deadline Let Lisa be polite with prob. q If Bart is: polite - cost is 1 aggressive - expected cost is q Aggression is dominant strategy Slot #17

Solving with MATHEMATICA q 20 ( t ) : Prob. of aggression when 20 agents are pending as a function of the time t, in equilibrium Time Aggression Probability deadline Blocking no one gets served

Solving with MATHEMATICA q k (4 k ) : Aggression prob. when k agents are pending before deadline in 4 k time slots (Deadline: when lunch trays are removed at U. Warwick, CS department) # agents

Deadline Cost – Few slots Theorem: In a symmetric equilibrium, whenever there aremore agents than time slots until deadline, agents transmit (transmission probability 1)

Deadline: non-blocking Equilibrium Theorem: There exists a symmetric equilibrium, such that whenever there are at least as many time slots as agents, transmission probability is less than 1

Efficiency of a linear deadline Theorem: There exists a symmetric equilibrium for D -deadline cost function such that: if the deadline D > 20n then, the probability that not all agents succeed prior to the deadline is negligible ( e -cD ) If there is enough time for everyone, a nice equilibrium

Switch Subject: Broadcast Channel / Latency Slot #1 Slot #2 Slot #3 Slot #4 Slot #5 Slot #6 time n agents (with a packet each) at time 0 No arrivals Known number of agents

Broadcast Channel Slot #1 Slot #2 Slot #3 Slot #4 Slot #5 Slot #6 Symmetric solution: every agent transmits with probability 1/n, the expected waiting time is O(n) slots. (Social optimum) If all others transmit with probability 1/n, agent is better off transmitting all the time and has constant latency time Transmission probability 1/n is not in equilibrium

Classical Results Maximizing the throughput Aloha (fixed probability) 0.37 More advanced algorithms 0.48 [MoH85] Impossibility result 0.56 [TsL88]

Well established research. –Mostly in the 80s To learn more

Related Work: Strategic MAC (Multiple Access Channel) [Altman et al 04] –Incomplete information: number of agents –Stochastic arrival flow to each source –Restricted to a single retransmission probability –Shows the existence of an equilibrium –Numerical results [MacKenzie & Wicker 03] –Multi-packet reception –Transmission cost [due to power loss] –Characterize the equilibrium and its stability –Also [Gang, Marbach & Yuen]

Protocol in Equilibrium Agent utility: Minimize latency Protocol in equilibrium: No incentive not to follow protocol Agent strategy: Transmission probability is a function of the number of pending agents k and current waiting time t Symmetry: All agents are symmetric

Broadcast Channel Slot #1 Slot #2 Slot #3 Slot #4 Slot #5 Slot #6 Strategy: Always transmit! Equilibrium –The channel is blocked anyway –Also in subgame perfect equilibrium –Remark: For at least 3 players Not quite what we look for –Is this the only equilibrium?

Summary of (Latency) Results 1.All protocols where transmission probabilities do not depend on the time have exponential latency 2.We give a time-dependent protocol where all agents are successful in linear time

Time-Independent Equilibrium Theorem: There is a unique time-independent, symmetric, non- blocking protocol in equilibrium for latency cost with transmission probabilities: Expected Delay of the first transmitted packet: Probability even one agent successful within polynomial time bound is negligible Compare to social optimum: –All agents successful in linear time bound, with high probability Very high Price of Anarchy

Latency Equilibrium Proof idea (assuming q = q k q k-1 ) For the other k-1 agents: – α k-1 = Pr[all silent] = (1-q) k-1 – β k-1 = Pr[success] = q(k-1)(1-q) k-2 Consider always Transmit: –Expected Cost: 1/α k-1 Consider Quiescence and then Transmit –Expected cost: 1/β k-1 +1/α k-2

Latency Equilibrium Proof idea (assuming q = q k q k-1 ) Equilibrium Equation: 1/α k-1 = 1/β k-1 +1/α k-2 Simplifying: 1-q-(k-1)q 2 =0 –Solution q 1/k A major simplification: q k q k-1

Fight for every slot Cooperation is more important when trying to avoid a large payment (deadline) How can one create a sudden jump in cost? –Using external payments Agents go crazy: everyone continuously transmits –Time dependence Analyze step cost function (Deadline) Translate Latency Minimization to Deadline Cost Time Deadline Effectively, no message gets through here T

Deadline Cost Function Deadline utility (scaled): Success before deadline – cost 0 Success after deadline – cost 1 Cost Time D (Deadline)

Deadline vs. Repeated Prisoners Dilemma For finite horizon prisoners dilemma: Defect on last game. Inductively, no cooperation on any game Not our case: successful agents leave

(t+1) +(1- ) C k,t+1 C k-1,t+1 + (1 - ) C k,t+1 Equilibrium Equations (Deadline, Latency, etc.) * C k,t = expected cost of k agents at time t (t) = cost of leaving at time t = Quiescence Transmit Probability one of the other k-1 agents leaves Probability the other k-1 agents are silent =

Equilibrium Equations k,t ( (t+1)-C k,t+1 ) = k,t (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 - (t+1)+ (t+1)-C k,t+1 ) (1-q k,t ) k-1 (F k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (F k,t+1 -F k-1,t+1 ) (1-q k,t ) F k,t+1 = (k-1)q k,t (F k,t+1 -F k-1,t+1 ) k,t ( (t+1))+(1- k,t )C k,t+1 = k,t C k-1,t+1 + (1- k,t ) C k,t+1

Equilibrium Equations k,t ( (t+1)-C k,t+1 ) = k,t (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 - (t+1)+ (t+1)-C k,t+1 ) (1-q k,t ) k-1 (F k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (F k,t+1 -F k-1,t+1 ) (1-q k,t ) F k,t+1 = (k-1)q k,t (F k,t+1 -F k-1,t+1 ) k,t ( (t+1))+(1- k,t )C k,t+1 = k,t C k-1,t+1 + (1- k,t ) C k,t+1

Equilibrium Equations k,t ( (t+1)-C k,t+1 ) = k,t (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 - (t+1)+ (t+1)-C k,t+1 ) (1-q k,t ) k-1 (F k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (F k,t+1 -F k-1,t+1 ) (1-q k,t ) F k,t+1 = (k-1)q k,t (F k,t+1 -F k-1,t+1 ) k,t ( (t+1))+(1- k,t )C k,t+1 = k,t C k-1,t+1 + (1- k,t ) C k,t+1

Equilibrium Equations k,t ( (t+1)-C k,t+1 ) = k,t (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 - (t+1)+ (t+1)-C k,t+1 ) (1-q k,t ) k-1 (F k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (F k,t+1 -F k-1,t+1 ) (1-q k,t ) F k,t+1 = (k-1)q k,t (F k,t+1 -F k-1,t+1 ) k,t ( (t+1))+(1- k,t )C k,t+1 = k,t C k-1,t+1 + (1- k,t ) C k,t+1

Equilibrium Equations k,t ( (t+1)-C k,t+1 ) = k,t (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 - (t+1)+ (t+1)-C k,t+1 ) (1-q k,t ) k-1 (F k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (F k,t+1 -F k-1,t+1 ) (1-q k,t ) F k,t+1 = (k-1)q k,t (F k,t+1 -F k-1,t+1 ) k,t ( (t+1))+(1- k,t )C k,t+1 = k,t C k-1,t+1 + (1- k,t ) C k,t+1

Equilibrium Equations k,t ( (t+1)-C k,t+1 ) = k,t (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 - (t+1)+ (t+1)-C k,t+1 ) (1-q k,t ) k-1 (F k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (F k,t+1 -F k-1,t+1 ) (1-q k,t ) F k,t+1 = (k-1)q k,t (F k,t+1 -F k-1,t+1 ) k,t ( (t+1))+(1- k,t )C k,t+1 = k,t C k-1,t+1 + (1- k,t ) C k,t+1

Equilibrium Equations k,t ( (t+1)-C k,t+1 ) = k,t (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 - (t+1)+ (t+1)-C k,t+1 ) (1-q k,t ) k-1 (F k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (F k,t+1 –F k-1,t+1 ) (1-q k,t ) F k,t+1 = (k-1)q k,t (F k,t+1 -F k-1,t+1 ) k,t ( (t+1))+(1- k,t )C k,t+1 = k,t C k-1,t+1 + (1- k,t ) C k,t+1

Equilibrium Equations k,t ( (t+1)-C k,t+1 ) = k,t (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 -C k,t+1 ) (1-q k,t ) k-1 ( (t+1)-C k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (C k-1,t+1 - (t+1)+ (t+1)-C k,t+1 ) (1-q k,t ) k-1 (F k,t+1 ) = (k-1)q k,t (1-q k,t ) k-2 (F k,t+1 -F k-1,t+1 ) (1-q k,t ) F k,t+1 = (k-1)q k,t (F k,t+1 -F k-1,t+1 ) k,t ( (t+1))+(1- k,t )C k,t+1 = k,t C k-1,t+1 + (1- k,t ) C k,t+1

> 1/2 Transmission Probability in Equilibrium Lemma (Manipulating equilibrium equations): >0 1/k < Benefit from losing one agent * F k,t = C k,t - (t) ; expected future cost C k,t = expected cost of k agents at time t Transmission probability when k players at time t Observation: –Either transmission probability in [ 1/k,2/k ] –Or, limited benefit from loosing one agent <1/2 2/ k >

Analysis of Deadline utility F k,t = F k-1,t+1 + (1- ) F k,t+1 We seek an upper bound for C n,0 = F n,0 Recall: Observation: –Either transmission probability in [ 1/k,2/k ] –Or, limited benefit from getting rid of one agent Consider a tree of recursive computation for F n,0

F n,t F n,t+1 F n-1,t+1 Upper Bound on Cost Two descendantsOne descendant (F n,t+1 > 2 F n-1,t+1 ) F n,t+1 < 2 F n-1,t+1 1- F n,t = F n-1,t+1 + (1- ) F n,t+1 F n,t < F n,t+1 < 2 F n-1,t+1 < 2 Good edgesDoubling edges F n,t+1 F n-1,t+1 F n,t F n,t / F n-1,t+1 < 0.8 < 0.3 Transmission probability

Upper Bound on Cost # Agents TimeDeadline Fn,0Fn,0 F n,1 F 17,D = 1 F n-3,4 F n-1,1 F n-2,2 F n-3,3 F n-4,4 F 1,D-9 = 0 cost=0 L 1 cost=1

Upper Bound on Cost The weight of such a path: –At least D-n good edges –Weight at most (1-β) D-n 2 n Number of paths at most: cost=0 1 Set D > 20n to get an upper bound of e -c n on cost

Protocol Design: from Deadline to Latency Embed artificial deadline into deadline protocol Deadline Protocol: -Before time 20n transmission probability as in equilibrium -If not transmitted until 20n : -Set transmission probability = 1 (blocking) -For exponential number of time slots Sub-game perfect equilibrium Social optimum achieved with high probability Equilibrium

Summary Unique non-blocking equilibrium for Aloha like Protocols –Exponential latency Deadlines: –If enough (linear) time, equilibrium is efficient Protocol Design: –Make ill behaved latency cost act more polite –Using virtual deadlines –No monetary bribes or penalties

Future Research General cost functions Does the time-independent equilibrium induces an optimal expected latency? Protocol in equilibrium for an arrival process Arrival times / duration in general congestion games: –Atomic traffic flow: dont leave home until 9:00 AM and get to work earlier

Two users : Equilibrium Always transmit: Best response is to Quiescence agents: Eq. q = ½, minimizes time to first success Notation: C k,t = expected latency with k agents at time t F k,t = C k,t - t

Two users : Equilibrium Always transmit: Best response is to be quiescent agents: Eq. q = ½, minimizes time to first success

In a strictly mixed Equilibrium, individual is indifferent between Transmit and Quiescent Equilibrium Equations + C k-1,t+1 (1 - ) C k,t+1 (t+1) (1- ) C k,t+1 + = * C k,t = expected cost of k agents at time t (t) = cost of leaving at time t = Quiescent Transmit Probability one of the other k-1 agents leaves Probability the other k-1 agents are silent

Broadcast Channel Slot #1 Slot #2 Slot #3 Slot #4 Slot #5 Slot #6 Symmetric solution: every agent transmits with probability 1/n, the expected waiting time is O(n) slots. (Social optimum) If all others transmit with probability 1/n, I am better off transmitting all the time, until success Transmission probability 1/n is not in equilibrium time

Upper Bound on Cost The weight of such a path: –At least D-n good edges –Weight at most (1-β) D-n 2 n Number of paths at most: cost=0 1 Set D > 20n to get an upper bound of e -c n on cost Let D = αn, then total weight at most 2(1-β) D-n 2 n α n e n = 2[2e(1-β) α-1 α] n