Minimizing Efficiency Loss in Mechanism and Protocol Design Tim Roughgarden (Stanford) includes joint work with: Shuchi Chawla (Wisconsin), Ho-Lin Chen.

Slides:



Advertisements
Similar presentations
Mathematical Preliminaries
Advertisements

EE384y: Packet Switch Architectures
Combinatorial Auction
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
UNITED NATIONS Shipment Details Report – January 2006.
Thursday, April 11 Some more applications of integer
and 6.855J Spanning Tree Algorithms. 2 The Greedy Algorithm in Action
Best Response Dynamics in Multicast Cost Sharing
Selfish Flows over Time Umang Bhaskar, Lisa Fleischer Dartmouth College Elliot Anshelevich Rensselaer Polytechnic Institute.
Evaluating Window Joins over Unbounded Streams Author: Jaewoo Kang, Jeffrey F. Naughton, Stratis D. Viglas University of Wisconsin-Madison CS Dept. Presenter:
Combinatorial Auctions with Complement-Free Bidders – An Overview Speaker: Michael Schapira Based on joint works with Shahar Dobzinski & Noam Nisan.
Routing in Undirected Graphs with Constant Congestion Julia Chuzhoy Toyota Technological Institute at Chicago.
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
6.896: Topics in Algorithmic Game Theory Lecture 21 Yang Cai.
1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA A A A.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
Real-Time Competitive Environments: Truthful Mechanisms for Allocating a Single Processor to Sporadic Tasks Anwar Mohammadi, Nathan Fisher, and Daniel.
Chapter 12 Capturing Surplus.
Inefficiency of equilibria, and potential games Computational game theory Spring 2008 Michal Feldman TexPoint fonts used in EMF. Read the TexPoint manual.
Conditional Equilibrium Outcomes via Ascending Price Processes Joint work with Hu Fu and Robert Kleinberg (Computer Science, Cornell University) Ron Lavi.
1 Approximation in Algorithmic Game Theory Robust Approximation Bounds for Equilibria and Auctions Tim Roughgarden Stanford University.
1 Robust Price of Anarchy Bounds via Smoothness Arguments Tim Roughgarden Stanford University.
1 Atomic Routing Games on Maximum Congestion Costas Busch Department of Computer Science Louisiana State University Collaborators: Rajgopal Kannan, LSU.
Shadow Prices vs. Vickrey Prices in Multipath Routing Parthasarathy Ramanujam, Zongpeng Li and Lisa Higham University of Calgary Presented by Ajay Gopinathan.
The Weighted Proportional Resource Allocation Milan Vojnović Microsoft Research Joint work with Thành Nguyen Microsoft Research Asia, Beijing, April, 2011.
15. Oktober Oktober Oktober 2012.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
Slide 1 of 31 Noam Nisan Approximation Mechanisms: computation, representation, and incentives Noam Nisan Hebrew University, Jerusalem Based on joint works.
Routing and Congestion Problems in General Networks Presented by Jun Zou CAS 744.
© 2012 National Heart Foundation of Australia. Slide 2.
Analyzing Genes and Genomes
Abdollah Khodkar Department of Mathematics University of West Georgia Joint work with Arezoo N. Ghameshlou, University of Tehran.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Other Dynamic Programming Problems
Select a time to count down from the clock above
Online Node-weighted Steiner Connectivity Problems Vahid Liaghat University of Maryland MohammadTaghi Hajiaghayi (UMD) Debmalya Panigrahi (Duke) 1.
Algorithmic mechanism design Vincent Conitzer
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
From Approximative Kernelization to High Fidelity Reductions joint with Michael Fellows Ariel Kulik Frances Rosamond Technion Charles Darwin Univ. Hadas.
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Price of Stability Li Jian Fudan University May, 8 th,2007 Introduction to.
1 A Graph-Theoretic Network Security Game M. Mavronicolas , V. Papadopoulou , A. Philippou  and P. Spirakis § University of Cyprus, Cyprus  University.
On Optimal Single-Item Auctions George Pierrakos UC Berkeley based on joint works with: Constantinos Daskalakis, Ilias Diakonikolas, Christos Papadimitriou,
Secret Sharing, Matroids, and Non-Shannon Information Inequalities.
Minimum Vertex Cover in Rectangle Graphs
Simple and Near-Optimal Auctions Tim Roughgarden (Stanford)
Beyond selfish routing: Network Formation Games. Network Formation Games NFGs model the various ways in which selfish agents might create/use networks.
The Price Of Stability for Network Design with Fair Cost Allocation Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, Tim Roughgarden.
More Powerful and Simpler Cost-Sharing Methods Carmine Ventre Joint work with Paolo Penna University of Salerno.
Group Strategyproofness and No Subsidy via LP-Duality By Kamal Jain and Vijay V. Vazirani.
Network Formation Games. Netwok Formation Games NFGs model distinct ways in which selfish agents might create and evaluate networks We’ll see two models:
Sharing the Cost of Multicast Transmissions Joan Feigenbaum Christos H. Papadimitriou Scott Shenker Conference version: STOC 2000 Journal version: JCSS.
Network Formation Games. Netwok Formation Games NFGs model distinct ways in which selfish agents might create and evaluate networks We’ll see two models:
1 Intrinsic Robustness of the Price of Anarchy Tim Roughgarden Stanford University.
Beyond selfish routing: Network Games. Network Games NGs model the various ways in which selfish agents strategically interact in using a network They.
Beyond selfish routing: Network Games. Network Games NGs model the various ways in which selfish users (i.e., players) strategically interact in using.
Vasilis Syrgkanis Cornell University
Network Formation Games. NFGs model distinct ways in which selfish agents might create and evaluate networks We’ll see two models: Global Connection Game.
Profit Maximizing Mechanisms for the Multicasting Game
Presentation transcript:

Minimizing Efficiency Loss in Mechanism and Protocol Design Tim Roughgarden (Stanford) includes joint work with: Shuchi Chawla (Wisconsin), Ho-Lin Chen (Stanford), Aranyak Mehta (IBM Almaden), Mukund Sundararajan (Stanford), Gregory Valiant (UC Berkeley)

2 Reasons for Efficiency Loss Non-cooperative equilibria: no control of underlying game, players' actions Auction design: players have private "valuations" for goods can use VCG mechanism to maximize efficiency but suboptimality inevitable if goal includes: poly-time + hard allocation (combinatorial auctions) different (e.g. maxmin) objective [Nisan/Ronen 99] revenue constraints

3 Quantifying Efficiency Loss Early applications: price of anarchy [Kousoupias/Papadimitriou 99], etc. approximation mechanisms both poly-time combinatorial auctions and maxmin objectives This talk: mechanism/protocol design to minimize worst-case efficiency loss. mechanism design s.t. revenue constraint protocol design to minimize price of anarchy full information but implementation constraints

4 Cost-Sharing Problems general case: set U of players, cost function C defined on U (incurred by mechanism) special case: fixed-tree-multicast rooted tree T with fixed edge costs c; C(S) = cost of subtree spanning S [Feigenbaum/Papadimitriou/Shenker 00] player i has valuation v i for winning Terminology: surplus of S = v(S) - C(S) [where v(S) = Σ i v i ]

5 Cost-Sharing Mechanisms cost-sharing mechanism: collect bids, pick winning set S, determines prices for winners Natural goals: truthful + "individually rational" economically efficient (maximizes surplus) "budget-balance" (revenue covers cost incurred) VCG fails miserably here fact: 3 goals mutually incompatible [Green/Laffont, Roberts 70s], [Feigenbaum/Krishnamurthy/Sami/Shenker 03]

6 Shapley Mechanism for Multicast collects bids (b i for each i) initialize S = all players share each edge equally among its users if b i p i for all i, done. else drop a player i with b i < p i and iterate Price = c(e 1 ) + c(e 2 )/3 + c(e 3 )/4 e2e2 e1e1 e3e3

7 Moulin Mechanisms [Moulin 99] Given: cost fn C(S) on subsets S of U Cost-Sharing Method: for every set S, defines a cost share χ(i,S) for every i in S (suggested prices) Defn: χ is ß-budget-balanced (ß-BB) if prices charged within ß of C(S) Moulin mechanism: simulate ascending auction using χ to compute prices at each iteration. Price = c(e 1 ) + c(e 2 )/3 + c(e 3 )/4 e2e2 e1e1 e3e3

8 Moulin Mechanisms: Good News Fact: [Moulin 99] if cost-sharing method χ is monotone (price for each player only increases), then the Moulin mechanism is truthful. utility = v i - p i if i wins, 0 otherwise reason: same as a classical ascending auction Also: groupstrategyproof (form of collusion-resistance) prices charged cover cost incurred (up to ß factor)

9 Moulin Mechanisms: Bad News Claim: Moulin mechanisms (e.g., the Shapley mechanism) need not maximize surplus. e 1 = 1 + k players with valuations: 1,1/2, 1/3, …, 1/k

10 Moulin Mechanisms: Bad News Claim: Moulin mechanisms (e.g., the Shapley mechanism) need not maximize surplus. opt surplus (ln k) - 1, Shapley surplus = 0 e 1 = 1 + k players with valuations: 1,1/2, 1/3, …, 1/k

11 Moulin Mechanisms: Bad News Claim: Moulin mechanisms (e.g., the Shapley mechanism) need not maximize surplus. opt surplus (ln k) - 1, Shapley surplus = 0 Negative result [GL,R,FKSS] : no truthful mechanism gets non-trivial approximation of BB + surplus. e 1 = 1 + k players with valuations: 1,1/2, 1/3, …, 1/k

12 Measuring Surplus Loss Goal: minimize worst-case surplus loss. surplus of S: v(S) - C(S) Defn: social cost of S: π(S) = C(S) + v(U\S) U = set of all players note: social cost = -surplus + v(U) Bad example: opt social cost 1, Shapley social cost ln k e 1 = 1 + 1,1/2, 1/3, …, 1/k

13 Measuring Surplus Loss Goal: minimize worst-case surplus loss. surplus of S: v(S) - C(S) Defn: social cost of S: π(S) = C(S) + v(U\S) U = set of all players note: social cost = -surplus + v(U) Bad example: opt social cost 1, Shapley social cost ln k Defn: a mechanism is α-approximate if it is an α- approximation algorithm w.r.t. the social cost objective (in the usual sense). e 1 = 1 + 1,1/2, 1/3, …, 1/k

14 Goal + Main Result High-level goal: subject to reasonable BB, design mechanism with smallest approximation factor. note: requires both upper + lower bound results precisely quantifies inevitable surplus loss

15 Goal + Main Result High-level goal: subject to reasonable BB, design mechanism with smallest approximation factor. note: requires both upper + lower bound results precisely quantifies inevitable surplus loss Main result: complete soln for Moulin mechanisms. [Roughgarden/Sundararajan STOC 06], [Chawla+R+S WINE 06], [R+S IPCO 07]

16 Goal + Main Result High-level goal: subject to reasonable BB, design mechanism with smallest approximation factor. note: requires both upper + lower bound results precisely quantifies inevitable surplus loss Main result: complete soln for Moulin mechanisms. [Roughgarden/Sundararajan STOC 06], [Chawla+R+S WINE 06], [R+S IPCO 07] Ex: multicast: Shapley is optimal Moulin mechanism approximation factor of social cost = H k extends to all submodular cost functions

17 More Examples Examples: uncapacitated facility location: the [Pal-Tardos 03] mechanism = optimal Moulin mechanism optimal approximation = Θ(log k) Steiner tree: the [Jain-Vazirani 01] mechanism = optimal Moulin mechanism optimal approximation factor of social cost = Θ(log 2 k) also extends to Steiner forest mechanism of [Konemann/Leonardi/Schaefer SODA 05] and rent-or buy mechanism of [Gupta/Srinivasan/Tardos 03]

18 Proof Techniques Part I: (problem-independent) identify parameter of a monotone cost-sharing method that controls approximation factor of Moulin mechanism [upper and lower bounds] reduces property of mechanism to property of method Part II: (problem-dependent) prove upper bound on parameter for favorite mechanisms, lower bound for all mechanisms has flavor of analysis of online algorithms

19 A Natural Lower Bound consider a cost-sharing method χ for C + corresponding Moulin mechanism M order the players of U = {1,2,...,k} let x i = χ(i,{1,2,...,i}) set v i = x i - M outputs Ø, social cost Σ i x i ; OPT is C(U) Σ i χ(i,{1,2,...,i})/C(U) lower bounds approximation factor e 1 = 1 + 1,1/2, 1/3, …, 1/k

20 A Natural Lower Bound consider a cost-sharing method χ for C + corresponding Moulin mechanism M order the players of U = {1,2,...,k} let x i = χ(i,{1,2,...,i}) set v i = x i - M outputs Ø, social cost Σ i x i ; OPT is C(U) Σ i χ(i,{1,2,...,i})/C(U) lower bounds approximation factor Defn: the summability α of χ for C is the largest lower bound arising in this way. e 1 = 1 + 1,1/2, 1/3, …, 1/k

21 A Key Theorem Summary: a Moulin mechanism based on an α- summable cost-sharing method is no better than α-approximate.

22 A Key Theorem Summary: a Moulin mechanism based on an α- summable cost-sharing method is no better than α-approximate. Theorem [Roughgarden/Sundararajan STOC 06] : a Moulin mechanism based on an α-summable, ß- BB cost-sharing method is (α+ß)-approximate. Point: for every O(1)-BB method χ, the parameter α completely characterizes the approximation factor of the corresponding mechanism.

23 Beyond Moulin Mechanisms Question: why obsessed with Moulin mechanisms? only general technique to achieve truthful + BB strong lower bounds for approximation for some problems [Immorlica/Mahdian/Mirrokni SODA 05] non-trivial to design (e.g., for UFL)

24 Beyond Moulin Mechanisms Question: why obsessed with Moulin mechanisms? only general technique to achieve truthful + BB strong lower bounds for approximation for some problems [Immorlica/Mahdian/Mirrokni SODA 05] non-trivial to design (e.g., for UFL) Acyclic Mechanisms [Mehta/Roughgarden/Sundararajan EC 07] : generalizes Moulin mechanisms. idea: order offers within iteration of ascending auction most "off-the-shelf" primal-dual algorithms work as is exponentially better BB + efficiency for e.g. Set Cover

25 Shapley Network Design Games Given: G = (V,E), fixed costs c e k players = vertex pairs (s i,t i ) each picks an s i -t i path Shapley cost sharing: cost of each edge of formed network split equally among users [Anshelevich et al FOCS 04] full-information noncooperative game

26 Inefficiency under Shapley Recall: with Shapley cost sharing, POA = k, even in undirected graphs POS = H k in directed graphs (unknown in undirected graphs) t s 1+ k 1 1 k == t k- 1

27 Inefficiency under Shapley Recall: with Shapley cost sharing, POA = k, even in undirected graphs POS = H k in directed graphs (unknown in undirected graphs) Question #1: can we do better? Question #2: subject to what? t s 1+ k 1 1 k == t k- 1

28 In Defense of Shapley Essential properties: (non-negotiable) "budget-balanced" (total cost shares = cost) "separable" (cost shares defined edge-by-edge) pure-strategy Nash equilibria exist Bonus good properties: (negotiable) "uniform" (same definition for all networks) "fair" (characterizes Shapley)

29 Key Question The Problem: design edge cost-sharing methods to minimize worst-case POA and/or POS. directed vs. undirected uniform vs. non-uniform single-sink vs. terminal pairs [Chen/Roughgarden/Valiant 07] Related work: coordination mechanisms [Christodoulou/Koutsoupias/Nanavati ICALP 04], [Immorlica/Li/Mirrokni/Schulz 05], [Azar et al 07] resource allocation [Johari/Tsitsiklis 07]

30 Directed Graphs Negative result: worst-case POA = k for every cost-sharing method, even non-uniform.

31 Directed Graphs Negative result: worst-case POA = k for every cost-sharing method, even non-uniform. Theorem: Shapley is the optimal uniform cost- sharing method! For every method, either: (1) there is a network game s.t. POS H k OR (2) there is a network game with no Nash eq.

32 Directed Graphs Negative result: worst-case POA = k for every cost-sharing method, even non-uniform. Theorem: Shapley is the optimal uniform cost- sharing method! For every method, either: (1) there is a network game s.t. POS H k OR (2) there is a network game with no Nash eq. Shapley can be justified on efficiency grounds, not just usual fairness/simplicity reasons open: what's up with non-uniform methods?

33 Undirected Graphs: Uniform Theorem: in undirected graphs, can reduce the worst-case POA to polylogarithmic! simple uniform priority-based scheme POA = O(log k) in with single sink, O(log 2 k) for pairs (follows from [IW 91], [AA96] )

34 Undirected Graphs: Uniform Theorem: in undirected graphs, can reduce the worst-case POA to polylogarithmic! simple uniform priority-based scheme POA = O(log k) in with single sink, O(log 2 k) for pairs (follows from [IW 91], [AA96] ) Theorem: For every unform cost-sharing method, worst-case POA = Ω(log k). [even single-sink] follows from complete characterization of uniform cost-sharing methods that always admit PNE

35 Undirected: Non-Uniform Theorem: Can reduce POA to 2 in single-sink networks via non-uniform method. idea: use Prim MST to define priority scheme easy: matching lower bound Theorem: For every non-uniform method, worst- case POA is general networks is Ω(log k). extremal graph construction lower bounds for "oblivious network design"

36 Open Questions Cost-Sharing Mechanism Design: lower bounds for non-Moulin mechanisms more applications of acyclic mechanisms profit-maximization Optimal Protocol Design: non-uniform methods in directed graphs lower bounds for scheduling mechanisms new applications (selfish routing, fair queuing)