DCSP-21 Jianfeng Feng Department of Computer Science Warwick Univ., UK

Slides:



Advertisements
Similar presentations
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Advertisements

$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Detection of Hydrological Changes – Nonparametric Approaches
Using Exponents to Write Large Numbers
DCSP-3: Fourier Transform (continuous time) Jianfeng Feng
DCSP-10 Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-17 Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-2: Fourier Transform I Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-12 Jianfeng Feng
DCSP-13 Jianfeng Feng
DCSP-5: Noise Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-14 Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-8: Minimal length coding I Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-17: Matched Filter Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-4: Modem Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-20 Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-7: Information Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-1: Introduction Jianfeng Feng. DCSP-1: Introduction Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-13 Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-22 Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-3: Fourier Transform Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-11 Jianfeng Feng
DSPRevision I
DCSP-12 Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-16 Jianfeng Feng Department of Computer Science Warwick Univ., UK
Chapter 7 Over-Sampling and Multi-Rate DSP Systems.
Learning Theory Reza Shadmehr Optimal feedback control stochastic feedback control with signal dependent noise.
Lecture 7. Distributions
Mobile Communications
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
The Spectral Representation of Stationary Time Series.
Equal or Not. Equal or Not
Slippery Slope
Digital Communication
DCSP-15 Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-13 Jianfeng Feng Department of Computer Science Warwick Univ., UK
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Expectation of random variables Moments (Sec )
Rules for means Rule 1: If X is a random variable and a and b are fixed numbers, then Rule 2: If X and Y are random variables, then.
SYSTEMS Identification
Communication Systems Simulation - III Harri Saarnisaari Part of Simulations and Tools for Telecommunication Course.
ELE 745 – Digital Communications Xavier Fernando
DCSP-5: Noise Jianfeng Feng Department of Computer Science Warwick Univ., UK
Prof. SankarReview of Random Process1 Probability Sample Space (S) –Collection of all possible outcomes of a random experiment Sample Point –Each outcome.
Random Processes and LSI Systems What happedns when a random signal is processed by an LSI system? This is illustrated below, where x(n) and y(n) are random.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
Correlated and Uncorrelated Signals Problem: we have two signals and. How “close” are they to each other? Example: in a radar (or sonar) we transmit a.
1 BIEN425 – Lecture 8 By the end of the lecture, you should be able to: –Compute cross- /auto-correlation using matrix multiplication –Compute cross- /auto-correlation.
DCSP-8: Minimal length coding I Jianfeng Feng Department of Computer Science Warwick Univ., UK
EE5393, Circuits, Computation, and Biology Computing with Probabilities 1,1,0,0,0,0,1,0 1,1,0,1,0,1,1,1 1,1,0,0,1,0,1,0 a = 6/8 c = 3/8 b = 4/8.
DCSP-15: Matched Filter Jianfeng Feng Department of Computer Science Warwick Univ., UK
Model Validation 1. Introduction Model validation is a crucial step to evaluate the quality of estimated models. If validation is unsuccessful, previous.
Discrete-time Random Signals
ECEN4503 Random Signals Lecture #39 15 April 2013 Dr. George Scheets n Read: 10.3, 11.1 n Problems: 11.1, 11.4, 11.15, (1 st Edition) n Problems:
Outline Carrier design Embedding and extraction for single tile and Multi-tiles (improving the robustness) Parameter α selection and invisibility Moment.
Chapter 6 Large Random Samples Weiqi Luo ( 骆伟祺 ) School of Data & Computer Science Sun Yat-Sen University :
Random Signals Basic concepts Bibliography Oppenheim’s book, Appendix A. Except A.5. We study a few things that are not in the book.
Statistics -Continuous probability distribution 2013/11/18.
Random signals Honza Černocký, ÚPGM.
64-QAM Communications System Design and Characterization
Department of Computer Science Warwick Univ., UK
Department of Computer Science Warwick Univ., UK
Error rate due to noise In this section, an expression for the probability of error will be derived The analysis technique, will be demonstrated on a binary.
Motion Models (cont) 2/16/2019.
Further Topics on Random Variables: Covariance and Correlation
Electrical Communications Systems ECE Spring 2019
Simulation Berlin Chen
Further Topics on Random Variables: Covariance and Correlation
Presentation transcript:

DCSP-21 Jianfeng Feng Department of Computer Science Warwick Univ., UK

Stochastic Processes Random variables: x Stochastic processes: x(t), x(n) P(x=1)=0.5 P (x(n)=1)=0.5 Toss a coin toss a coin many times A sequence here

Stochastic Processes Random variables: x Stochastic processes: x(t), x(n) P(x=1)=0.5 P (x(n)=1)=0.5 mean E x =0.5 mean E x(n) = 0.5 Variance var (x) = var ( x(n) ) = correlation between x(0) and x (n) r xx (n) = E (x(0) – E x(0)) (x(n) – E x(n))

x=randn(1000,1); hold on y=zeros(1000); z=zeros(1000); plot(x); for i=1:900 y(i)=x(i+100); z(i+100)=x(i+100); mxy(i)=x(i)*y(i); end plot(z+10,'r') plot(y+20,'g') plot(mxy+30,'b')

mean(mxy) ans =

plot(abs(fft(autocorr(x)))) hold on plot(abs(fft((x))),'r')

White noise: the spectrum of its autorrelation is flat

Stochastic Processes Random variables: x Stochastic processes: x(t), x(n) The summation of two normal random variables Is again a normal random variable Z = X + Y mean (Z) = mean (X) + mean(Y) var(Z) = var (X) + var(Y) (if X and Y are independent) The summation of two white noise processes is again a white noise process Z(n) = X(n) + Y(n) mean (Z) = mean (X) + mean(Y) var(Z) = var (X) + var(Y) (if X and Y are independent)

Stochastic Processes Random variables: x Stochastic processes: x(t), x(n) The summation of two normal random variables Is again a normal random variable Z = X + Y mean (Z) = mean (X) + mean(Y) var(Z) = var (X) + var(Y) (if X and Y are independent) The summation of two white noise processes is again a white noise process Z(n) = X(n) + Y(n) mean (Z) = mean (X) + mean(Y) var(Z) = var (X) + var(Y) (if X and Y are independent)

Application: Matched Filter Assume an n bit signal a(i) = S(-i) Y(n)= a(0) X(n) + a(1) X(n-1) + … + a(N) X(n-N) Actual input X(i) = S(i)+ (i)

The variance is not enlarged due to the summation of many noise terms

clear all close all mag=0.3; for i=1:500 x(i)=0; v(i)=randn(1,1); w(i)=x(i)+v(i); end for i=501:600 x(i)=mag; v(i)=randn(1,1); w(i)=x(i)+v(i); end for i=601:1000 x(i)=0; v(i)=randn(1,1); w(i)=x(i)+v(i); end for i=1:100 h(i)=1; end for j=101:1000 dec(j)=h*w([j-100:j-1])'; end figure(1) plot(v); hold on plot(x,'r'); figure(2) plot(dec); figure(3) plot(w,'r');