Fig.: 5.1 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag,

Slides:



Advertisements
Similar presentations
Material Performance Centre University of Manchester UNTF 2010 Andrew Wasylyk UNTF 2010 Assessment of Ductile Tearing and Plastic collapse in 304 SS Andrew.
Advertisements

CHAPTER 4: FRACTURE The separation or fragmentation of a solid body into two or more parts, under the action of stresses, is called fracture. Fracture.
Chapter 7 Fracture: Macroscopic Aspects. Goofy Duck Analog for Modes of Crack Loading “Goofy duck” analog for three modes of crack loading. (a) Crack/beak.
ENGR-45_Lec-19_Failure-1.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical &
Chapter 9 Failure of Materials
Week 5 Fracture, Toughness, Fatigue, and Creep
Grain Boundaries Ni-Base Superalloy Waspalloy 50µm high-angle grain boundary (  >15°) low-angle grain boundary.
Mechanical Characterization of Materials
Engineering Materials Module 6: Toughness and Impact Test
MODELLING OF DEFORMATION AND DAMAGE OF SPECIMENS UNDER STATIC AND DYNAMIC LOADING Kondryakov E.A., Lenzion S.V., and Kharchenko V.V.
Micro-Scale Experiments and Models for Composite Materials PhD project duration: 1. January December 2014 Project type & funding: PhD-A project,
Investigation of the structural resistance of Silicon membranes for microfluidic applications in High Energy Physics C. Gabry A. Mapelli, G. Romagnoli,
Manufacturing Technology
Design of Machine Elements
Chapter 7 Mechanical Properties of Solids.
1 ASTM : American Society of Testing and Materials.
Presented by Robert Hurlston UNTF Conference 2011 Characterisation of the Effect of Residual Stress on Brittle Fracture in Pressure Vessel Steel.
Engineering materials lecture #14
Chapter 12: Michel, B.: Testing of Microcomponents. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition.
ME 388 – Applied Instrumentation Laboratory Fatigue Lab.
CHAPTER 7: MECHANICAL PROPERTIES
Jiangyu Li, University of Washington Lecture 21 Fracture Mechanics Mechanical Behavior of Materials Section Jiangyu Li University of Washington.
Lecture #19 Failure & Fracture
Tests of Hardened Concrete. Stress Balance for equilibrium  loads = external forces  internal forces = stress Axial tension.
Lab 6B -Fracture Toughness and Fracture Toughness-limited Design Big bang for the buck!
Investigation of the structural resistance of Silicon membranes for microfluidic applications in High Energy Physics C. Gabry A. Mapelli, G. Romagnoli,
Evaluation and Comparison of Fracture Behavior of Selected Nuclear Graphite by Small Size SENB Specimens Se-Hwan Chi. Ph. D. 15 th International Nuclear.
Design Agains Fatigue - part Fatigue Endurance Prediction Design Agains Fatigue - part Fatigue Endurance Prediction Milan Růžička
Mechanical Properties
Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich.
Fig.: 7.1 Chapter 7: Ramsteiner, F.: Evaluating Environmental Stress Cracking Restistance. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl.
École Polytechnique Fédérale de Lausanne (EPFL),
CHAPTER 6: MECHANICAL PROPERTIES
Chapter 10: Altstädt, V.: Testing of Composite Materials. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2.
High strength materials are being increasingly used in designing critical components to save weight or meet difficult service conditions. Unfortunately.
Fig.: 6.1 Chapter 6.1: Thermal Properties. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition thermic.
Fracture This is BIG topic Underlines all of Failure Analysis – One of the big fields that metallurgists/ material scientists get involved in There are.
Andrew Wasylyk UNTF 2011 Andrew Wasylyk UNTF 2011.
Welding Design 1998/MJ1/MatJoin2/1 Design. Lesson Objectives When you finish this lesson you will understand: Mechanical and Physical Properties (structure.
1 Design for Different Type of Loading Lecture Notes Dr. Rakhmad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia Machine Element in Mechanical.
Week 4 Fracture, Toughness, Fatigue, and Creep
Chapter 8: Failure of Metals
Fracture, Toughness, Fatigue, and Creep
Registered Electrical & Mechanical Engineer
Infra-red Technique for Damage Tolerant Sandwich Structures W.Wang 1 J.M.Dulieu-Barton 1, R.K.Fruehmann 1 and C.Berggreen 2 1 Faculty.
Exam 2 Grade Distribution. Stress-strain behavior (Room T): Ideal vs Real Materials TS
Trends with Materials Heat treatment will cause embrittlement
Week 4 Fracture, Toughness, Fatigue, and Creep
Engineering properties of rock Prepared by :- Kumari Pooja 3 rd sem civil department 13oo
Date of download: 5/28/2016 Copyright © ASME. All rights reserved. From: Hopkinson Bar Loaded Fracture Experimental Technique: A Critical Review of Dynamic.
ISSUES TO ADDRESS... How do flaws in a material initiate failure? How is fracture resistance quantified; how do different material classes compare? How.
Chapter 4. Mechanical Testing: Tension Test and Other Basic Tests
Mechanical Properties
Tests For Materials.
Basic principles of metallic fracture
Mechanical Properties
Imperial College OF SCIENCE TECHNOLOGY AND MEDICINE Department of Aeronautics Failure Analysis of a Composite Wingbox with Impact Damage:- A Fracture.
Methods to Maximize Design Life
Fracture and Fatigue Crack Propagation in Injection-Molded Short Fiber-Reinforced Thermoplastics József Karger-Kocsis 2017.
Mechanical Properties of Metals
Doç.Dr.M.Evren Toygar, DEÜ
Experiment #1 Tension Test
Mechanical Concept MOLDFLOW KOREA
ME260 Mechanical Engineering Design II
Fracture mechanics Subjects of interest Introduction/ objectives
Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
1/18/2019 6:28 AM C h a p t e r 8 Failure Dr. Mohammad Abuhaiba, PE.
CHAPTER 6: MECHANICAL PROPERTIES
Mechanical Properties of Metals
Scratch Resistance of PP as a Function of MFR and fiber content
Presentation transcript:

Fig.: 5.1 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition  y z  0 mode III N  N B   x r  z x y  mode I mode I mode II

s N W a F F/2 L/2 W=10mm B= 2…10mm L=80mm s=40…70mm a=0.5…7.5mm N= 2mm K = f F s B W 3/2 W a I W a f = 2.9 − − W a 1 2 W a 3 2 W a 5 2 W a 7 2 W a 9 2 f = W a 2 3 W a 1.99 − 1 − 2.15 − W a W a W a W a 2 W a 1 −1 − 3 2 W a 1+2 SENB specimen (single-edge-notched bend specimen) Fig.: 5.2a Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

W a H/2 N s O D F F W/2 W= 40mm H= 150mm s=120mm D= 10mm a=18… 22mm N= 3mm B= 2… 10mm K = f F a B W 1/2 W a I W a f = 1.99 − − W a W a 2 W a 3 W a 4 SENT specimen (single-edge-notched tension specimen) Fig.: 5.2b Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

W G a l H/2 N s O D F F W=40mm H= 48mm G=50mm s=22mm D=10mm a=18…22mm N= 2mm B= 2…34mm l=1.5mm K = f F B W 1/2 W a I W a f = 29.6 − − W a 1 2 W a 3 2 W a 5 2 W a 7 2 W a 9 2 CT specimen (compact tension specimen) Fig.: 5.2c Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

B(mm) K ; K (MPamm ) c Ic 1/2 a ESZ/EDZ B EDZ B (mm) K ; K (MPamm ) c Ic 1/ b B (mm) B min c Ic K K K c K SENT CT B min Fig.: 5.3

a B 100 µm machined notch (razor blade notch) stable crack growth (fracture mirror length) damage area residual fracture areab Fig.: 5.4 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

x r pl a y    y  Fig.: 5.5 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

200 µm ab 50 µm Fig.: 5.6 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

s/2  /2 2 1 f max 3 W 1hinge point 2sharp notch 3support 1 n (W a) Fig.: 5.7 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

c s/2  /2 stable crack growth stretch zone brittle fracture initial crack SZW SZH SZW SZH  x y a b d 100 µm 5 µm 10 µm Fig.: 5.8 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

b T y n x dR 2 1 R F f resp. v A G a 1 a 2 a 3 f (i=1...3) i J I f resp. v f 3 f 2 f 1 B A G B a Riss AA G a 1 a 2 a 3 1 I 1 I 2 I 3 I 1 I 2 I 3 J Ic c a d aa crack Fig.: 5.9 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

loading parameter J;  technical crack initiation physical crack initiation stable crack growth  a  a = 0.2 mm aa SZW blunting Line crack propagation resistance against crack initiation crack blunting crack initiation resistance against crack propagation J ;  0.2 J ;  i Fig.: 5.10 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

collecting lens junction diode rotating mirror start stop laser deflection mirror semiconductor prism F F motor v t evaluation and graphics CT specimen Fig.: 5.11 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

T F F F Q max F F Q F S S T  type I type II 5 % v c v c Fig.: 5.12 v; v ; f L L Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

crack initiation a 50 µm b c 200 µm 1 mm f (mm) crack propagation crack blunting F/(B(W−a )) (Nmm ) eff -2 Fig.: 5.13 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

A G F max unnotched specimen notched specimen A 0 F max F (N) Fig.: 5.14 Lmax maxL0 v ; f 0 L v ; f (mm) L v ; f Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

Charpy impact tester ICIT-4J support striker specimen photooptical transducer deflection (f) - sensor amplifier digital oscilloscope load (F) - transducer load–deflection diagram analysis of F–f diagram time resp. deflection (ms; mm) A G = A pl + A el F max F gy F1F1  A pl ARAR t B ; f max f gy load F (N) - checking of experimental conditions - SEM analysis of fracture surface - fracture mechanics concept - checking of geometry - independence of fracture mechanics values F 1 < F max A H > 3 A G t B > 3  K Id ;  Id ; J Id personal computer Fig.: 5.15 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

A G = A pl + A el F max f max f gy F gy F F AGAG A pl A el AGAG AGAG AGAG ARAR ARAR ARAR A pl I II III Ia IIa IIIa f F f max Fig.: 5.16 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

a/W = 0.45a/W = 0.2 F = 36 N 1 F = 28 N max F = 8 N 1 F = 36 N max F = 8 N 1 F = 62 N max F = 36 N 1 F = 53 N max v = 1 ms I v = 2.9 ms I Fig.: 5.17 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

F s L W A a B 0.05 < a/W < < a/W < < a/W < 0.7 B B Fig.: 5.18 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

J BL J FEM J MC J FEM J RPM J FEM J J ST v = 1.5 ms s/W = 4 RT I PVCC a/W J-integral ratio Fig.: 5.19 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

10 Ic K ; K (MPamm )  Id 1/ I  = 3466 K Fig.: 5.20 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

0.1 Ic J ; J (Nmm )  Id I  = 224 J Fig.: 5.21 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

0.01 Idk  [mm]  Idk  = 3.6  Fig.: 5.22 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

masses lifting device acceleration unit temperature chamber controller drop weigth support clamped test sheet F strain gauge instrumented drop weigth cross-head spring Fig.: 5.23 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

wt.-% 5 wt.-% 10 wt.-% 20 wt.-% 25 wt.-% PA 6 + impact modifier T (°C) J (Nmm -1 ) d ST Fig.: 5.24 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

0 0  v PVC/chalk PP/chalk PVC/SiO PE/BW PE/HP 2 PE/SiO J (Nmm -1 ) d ST Fig.: 5.25 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

F (N) max  v  v PVC/chalk PP/chalk PVC/SiO PE/BW PE/HP 2 PE/SiO 2 b a f (mm) max Fig.: 5.26 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

coupling agent content (wt.-%) b 2 µm 5 µm a surfactant stearic acid J /J ST M Id  = 0.9  = 1.5 Fig.: 5.27 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

 (10 -3 mm) Id PVC PVC+Kreide( j v =0,17) T(K) PVC PVC + chalk (  = 0.17) v T (°C) Fig.: 5.28 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

 v c  v d  v b  v eff F (N) max a f (mm) max J (Nmm ) Id K (MPamm ) Id 1/2 K (a ) ld 0 K (a ) ld Fig.: 5.29 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

; experiment model PE/GF PP/GF  v J /J Id M Id Fig.: 5.30 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

coupling agent content (wt.-%) PP + glass-fiber (  = 0.13) v 0.8 mm f F 100 µm F f 0.8 mm 100 N A /A G M R G R M Fig.: 5.31 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

J (Nmm -1 )  a (mm) E/P copolymer + 10 wt.-% GF with 0.4 wt.-% CA without CA Fig.: 5.32 CA – coupling agent content Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

a (kJm ) ; with coupling agent without coupling agent PE content (wt.-%) experiment model ; cN Fig.: 5.33 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

TPU/ABS blends TPU/ABS 50/50 TPU/ABS 20/80 ABS J (Nmm )  a (mm) aa min aa max Fig.: 5.34 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

J (Nmm )  a (mm) aa min T = 30 °C A (µm) A = 2.00 µm A = 1.45 µm A = 1.40 µm A = 1.30 µm A = 1.20 µm 0 aa max A  1.4 µm c J (Nmm ) 0.2 Fig.: 5.35 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

J (Nmm )  a (mm) aa min 0 aa max T = 23 °C A (µm) A  0.4 µm c A = 1.00 µm A = 0.57 µm A = 0.54 µm A = 0.40 µm A = 0.39 µm A = 0.36 µm J (Nmm ) 0.2 Fig.: 5.36 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

brittle copolymer 1 tough high impact T (°C) A/D copolymer 1 (30 °C) copolymer 2 (20 °C) J (Nmm ) copolymer 2 (A/D) c Fig.: 5.37 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

T (°C)  (wt.-%) high impact brittle tough energy - determined EPR Fig.: 5.38 J ST Id J 0.2 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

t (min) 175 Id 0 K (MPamm ) / w composition 2 composition 1 Fig.: 5.39 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

2 µm Fig.: 5.40 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

d J (Nmm -1 ) carbon black sulfur carbon black content (phr) sulfur content (phr) Fig.: 5.41 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

material selection dimensioning strength verification  >   zul strain verification demands on technology manufacturing monitoring unrealizable realizable realization fracture behavior toughundefined brittle Charpy impact strength sufficient unsufficient velocity- temperature- shifting-concept sufficient unsufficient fracture mechanics concept K < K I I zul or J < J K > K J > J I I zul  <   zul  >   zul  <  zul I I zul Fig.: 5.42 Chapter 5: Fracture Toughness Measurements in Engineering Plastics. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition