S. M. Nishigaki S. M. Nishigaki Shimane Univ based on ongoing work with M. Giordano, T. G. Kovacs, F. Pittler MTA ATOMKI Debrecen Aug. 3, 2013 LATTICE2013,

Slides:



Advertisements
Similar presentations
Nagoya March. 20, 2012 H. Terao. (Nara Women’s Univ.)
Advertisements

Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
A method of finding the critical point in finite density QCD
Large Nc Gauge Theories on the lattice Rajamani Narayanan Florida International University Rajamani Narayanan August 10, 2011.
1 Meson correlators of two-flavor QCD in the epsilon-regime Hidenori Fukaya (RIKEN) with S.Aoki, S.Hashimoto, T.Kaneko, H.Matsufuru, J.Noaki, K.Ogawa,
Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions WHOT-QCD Collaboration: S.
Lattice QCD (INTRODUCTION) DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005.
Axial symmetry at finite temperature Guido Cossu High Energy Accelerator Research Organization – KEK Lattice Field Theory on multi-PFLOPS computers German-Japanese.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
QCD Dirac Spectra and Random Matrix Theory: Recent Applications, Niels Bohr Institute, May 8, 2007 Eugene Kanzieper Department of Applied Mathematics H.I.T.
Test of the Stefan-Boltzmann behavior for T>0 at tree-level of perturbation theory on the lattice DESY Summer Student 2010 Carmen Ka Ki Li Imperial College.
Thermal 2007T.Umeda (Tsukuba)1 Constant mode in charmonium correlation functions Takashi Umeda This is based on the Phys. Rev. D (2007) Thermal.
N F = 3 Critical Point from Canonical Ensemble χ QCD Collaboration: A. Li, A. Alexandru, KFL, and X.F. Meng Finite Density Algorithm with Canonical Approach.
Phases of planar QCD1 July 26, Lattice 05, Dublin Phases of planar QCD on the torus H. Neuberger Rutgers On the two previous occasions that I gave plenary.
Effective field theories for QCD with rooted staggered fermions Claude Bernard, Maarten Golterman and Yigal Shamir Lattice 2007, Regensburg.
Role of Anderson-Mott localization in the QCD phase transitions Antonio M. García-García Princeton University ICTP, Trieste We investigate.
1 Hiroshi Ohki, Tetsuya Onogi (YITP, Kyoto U.) Hideo Matsufuru (KEK) October High precision study of B*Bπ coupling in unquenched QCD.
Oleg Yevtushenko Critical scaling in Random Matrices with fractal eigenstates In collaboration with: Vladimir Kravtsov (ICTP, Trieste), Alexander Ossipov.
A semiclassical, quantitative approach to the Anderson transition Antonio M. García-García Princeton University We study analytically.
Oleg Yevtushenko Critical Propagators in Power Law Banded RMT: from multifractality to Lévy flights In collaboration with: Philipp Snajberk (LMU & ASC,
Role of Anderson-Mott localization in the QCD phase transitions Antonio M. García-García Princeton University ICTP, Trieste We investigate.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
ATHIC2008T.Umeda (Tsukuba)1 QCD Thermodynamics at fixed lattice scale Takashi Umeda (Univ. of Tsukuba) for WHOT-QCD Collaboration ATHIC2008, Univ. of Tsukuba,
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
Exploring Real-time Functions on the Lattice with Inverse Propagator and Self-Energy Masakiyo Kitazawa (Osaka U.) 22/Sep./2011 Lunch BNL.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Masakiyo Kitazawa (Osaka Univ.) HQ2008, Aug. 19, 2008 Hot Quarks in Lattice QCD.
Komaba seminarT.Umeda (Tsukuba)1 A study of charmonium dissociation temperatures using a finite volume technique in the lattice QCD T. Umeda and H. Ohno.
Multifractality of random wavefunctions: recent progress
Alexander Ossipov School of Mathematical Sciences, University of Nottingham, UK TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
QUANTUM CHAOS IN GRAPHENE Spiros Evangelou is it the same as for any other 2D lattice? 1.
1 Approaching the chiral limit in lattice QCD Hidenori Fukaya (RIKEN Wako) for JLQCD collaboration Ph.D. thesis [hep-lat/ ], JLQCD collaboration,Phys.Rev.D74:094505(2006)[hep-
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
Workshop on Optimization in Complex Networks, CNLS, LANL (19-22 June 2006) Application of replica method to scale-free networks: Spectral density and spin-glass.
Large N reduction and supersymmetry MCFP Workshop on Large N Gauge Theories, May 13-15, 2010, University of Maryland, College Park Jun Nishimura (KEK Theory.
Color Glass Condensate HIM MEETING( 광주 ) Dec. 4, 2004.
1 Lattice QCD, Random Matrix Theory and chiral condensates JLQCD collaboration, Phys.Rev.Lett.98,172001(2007) [hep-lat/ ], Phys.Rev.D76, (2007)
Heavy quark potential at non-zero temperature Péter Petreczky Hard Probes 2013, Stellenbosch, South Africa, November 4-8, 2013 Motivation : the study and.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with S. Aoki, K. Kanaya, N. Ishii, N. Ukita, T. Umeda (Univ. of Tsukuba) T. Hatsuda (Univ. of.
JPS08autumnT.Umeda (Tsukuba)1 Thermodynamics at fixed lattice spacing Takashi Umeda (Univ. of Tsukuba) for WHOT-QCD Collaboration JPS meeting, Yamagata.
Ilya A. Gruzberg (University of Chicago)
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,
Pion Correlators in the ε- regime Hidenori Fukaya (YITP) collaboration with S. Hashimoto (KEK) and K.Ogawa (Sokendai)
Lattice QCD at finite density
Lattice 2006 Tucson, AZT.Umeda (BNL)1 QCD thermodynamics with N f =2+1 near the continuum limit at realistic quark masses Takashi Umeda (BNL) for the RBC.
XXXI Bienal de la RSEF, Granada, España, septiembre Angel Gómez Nicola Universidad Complutense Madrid COEFICIENTES DE TRANSPORTE EN UN GAS.
Contents: 1. Introduction/ Model 2. Meson Properties at Finite Temperature 3. Chemical Potential/ Phase Diagram 4. Summary Trento 06/June 20 Holographic.
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
The QCD phase diagram and fluctuations Deconfinement in the SU(N) pure gauge theory and Polyakov loop fluctuations Polyakov loop fluctuations in the presence.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
QCD on Teraflops computerT.Umeda (BNL)1 QCD thermodynamics on QCDOC and APEnext supercomputers QCD thermodynamics on QCDOC and APEnext supercomputers Takashi.
Syo Kamata Rikkyo University In collaboration with Hidekazu Tanaka.
Study of the structure of the QCD vacuum
Nc=2 lattice gauge theories with
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
QCD Thermodynamics at fixed lattice scale
Speaker: Takahiro Doi (Kyoto University)
Study of Aoki phase in Nc=2 gauge theories
New Vista On Excited States
Thermodynamics of SU(3) gauge theory at fixed lattice spacing
QCD thermodynamics on QCDOC Machine
Lattice QCD, Random Matrix Theory and chiral condensates
IR fixed points and conformal window in SU(3) gauge Theories
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
Multifractality in delay times statistics
Presentation transcript:

S. M. Nishigaki S. M. Nishigaki Shimane Univ based on ongoing work with M. Giordano, T. G. Kovacs, F. Pittler MTA ATOMKI Debrecen Aug. 3, 2013 LATTICE2013, Mainz Critical Statistics at the Mobility Edge of QCD Dirac spectra

Anderson’s tight-binding Model : random Schrodinger op. i.i.d. random variable V x fixed const Wilson’s Lattice Gauge Theory : stochastic Dirac op. □ □ Boltzmann weight analogy of localization? ‘random’ SU(N) variable U x,  fixed const m q ×   Introduction 1

Anderson’s tight-binding Hamiltonian : random Schrodinger op. Wilson’s Lattice Gauge Theory : stochastic Dirac op. Introduction “ Halasz-Verbaarschot ’95 ” critical statistics 2

slide nr. 01 ~ 02 Introduction 03 ~ 09 Basics: RMT & AH 10 ~ 13 Review: CS & deformed RM 14 ~ 15 LSD of CS & deformed RM SMN’98,’99 16 ~ 17 Dirac sp. & chiral RM D-SMN’01, SMN’13 18 ~ 19 Review: Dirac sp. at high T 20 ~ 27 Dirac sp. at high T & deformed RM G-K-SMN-P’13 PLAN I II III

{sparse, dimensionful} {dense, indep. random} sharing discrete symmetry Random matrices I.1 RMT Universality in local fluctuation of EVs ⇒ Gaussian harmonic osc. WF (Hermite polyn.) 3 Slater det : EVs = 1D free fermions

Two-level Correlator exp(-s) Level Spacing Distribution (LSD)  =0 no corr  =1  =2 RM  =4 ~ s  ~ exp(-c  s 2 ) Local EV correlation - bulk I.1 RMT 4

random V x fixed t I.2 AH vs RMT Anderson Hamiltonian x W VxVx x 5 t t

 d, w/o B  d, with B vs GOE  vs GUE  weak randomness : level statistics ⊂ RM universality I.2 AH vs RMT random V i fixed t 6 Level Spacing Distribution (LSD)

H-S transf Wegner, Efetov ’80s I.2 AH vs RMT NL  M for Anderson H Gaussian av. over V(x) diffusion cst  regime : 0 mode dominance : 0d NL  M ⇔ RM 7

perturbative  -function of NL  Ms in d=2+  (g)(g) Insulator (localized) Metal (extended) d=2 (AII), d≥3 d=2 (AI, A) g*g* ヨ fixed pt conductance g. d=1 I.3 Localization Wegner ’89 NL  M for Anderson H 8

:  regime, 0 mode dominance reduces to 0D NL  M ⇔ RMT ergodic regime : RMT √ ergodic regime E Th → ∞ : RMT √ diffusive regime E : perturbation √ diffusive regime E Th >>  : perturbation √ → phenomenological model desirable I.3 Localization NL  M for Anderson H 9 “mobility edge” : perturbation × “mobility edge” E Th ~  : perturbation ×

EV density localized WF  ≪ L no repulsion → Poisson multifractal WF  ~ L Scale Invariant Critical Statistics II.1 Critical Statistics example: 3d, V=20 3, N conf =10 4 randomness W/t =18.1 mag. flux  =0.4  Shklovskii et al ’93 LSD of Anderson H 10

Sparse overlap distant levels becomes less repulsive level spacing level # variance Poisson-like Chalker ’90 Zharekeshev-Kramer ’97 “Level Repulsion without Rigidity” II.1 Critical Statistics 11 Anomalous inverse part. ratio  d, with B WFs and EVs at ME

II.2 Deformed RM Invariant RM spontaneously broken equivalent to free fermions at temp. T>0 MNS model Moshe-Neuberger-Shapiro ’94 U(N) inv → equivalent to Banded RM multifractal WF 12

II.2 Deformed RM U(N) inv Invariant RM spontaneously broken equivalent to free fermions at temp. T>0 MNS model Moshe-Neuberger-Shapiro ’94 12 “HCIZ integral”

: 1D free fermions at T>0 T→0 : Fermi repulsion ⇒ RMT T→∞: classical, no repulsion ⇒ Poisson 0<T<∞ ⇒ intermediate statistics II.2 Deformed RM MNS model Moshe-Neuberger-Shapiro ’94 13

~ e -s /2     SMN ’98 LSD : deformed RM RM Poisson ~ s  properties of CS built-in deformation parameter II.3 CS vs deformed RM 14

3d with B 3d with SOC a=3.55 from tail fit s ≫ 1 deformed RM = CS of AH → high-T QCD? II.3 CS vs deformed RM SMN ’99 LSD : Anderson H at ME 15 3d without B

Small Dirac EV fluctuation discretization garbage → wealth of physical info on  SB discretization garbage → wealth of physical info on  SB  regime : exact chRMT LEC EV density, smallest EV distr,... direct access to  F   W 8  with probe III.0 Dirac spectrum global symm Splittorff, Lattice’12 plenary Verbaarschot, Lattice’13 7D 16

k th Dirac EV distribution k th Dirac EV distribution III.0 Dirac spectrum sample: U(1) Dirac spectrum vs chGUE at origin chiral condensate …not the subject of today’s talk → bulk of spectrum Damgaard-SMN’01 SMN’13 -th EV 17

Dirac spectra for high-T QCD soft edge Airy hard edge Bessel  ?→?→ III.1 Dirac spectrum - previous soft edges Airy? Farchoni-deForcrand-Hip-Lang-Splittorff ’99 + too many other groups to list, sorry. other scenarios from RMT: Jackson-Verbaarschot ’96 Akemann-Damgaard-Magnea-SMN ’98

Damgaard et al ’00  × ・ non-Airy behavior ・ unfolding scale is different soft edges Airy? Dirac spectra for high-T QCD III.1 Dirac spectrum - previous 18

SU(3) quenched LGT on   ~   ×  KS Dirac op. Garcia-Osborn 07 III.1 Dirac spectrum - previous... spectral averaing over a window too wide for Level Statistics ・ chi symm restoration ・ localization ・ deconfinement simultaneous? 19 Localization and QCD transition

# gauge: unimproved Wilson fermion: naive staggered We have analyzed low-lying Staggered Dirac EVs for: physical pt. determined by Budapest-Wuppertal Giordano-Kovacs-SMN-Pittler ’13 in prep. * gauge: Symanzik improved fermion: 2-level stout-smeared staggered III.2 Dirac spectrum – current status 20 Dirac spectra for high-T QCD at physical pt gaugeNFNF βm ud msms a[fm]NsNs NtNt TN conf N EV SU(2) ,24,32,4842.6T c 3k256 SU(3) ,28,...,484394Me V 7k~40 k 512~1 k

local EV window (2~10 evs) → LSD III.2 Dirac spectrum – current status 22 gaugeNFNF βm ud msms a[fm]NsNs NtNt TN conf N EV SU(2) ,24,32,4842.6T c 3k256 SU(3) ,28,...,484394Me V 7k~40 k 512~1 k Dirac spectra for high-T QCD at physical pt

III.3 ME & deformed RM Dirac LSD for high-T QCD 23 deform. parameter vs EV window G-K-SMN-P ’13

dRM nicely fits low-lying Dirac spectra of high-T QCD in each EV window near ME, just as in Anderson H conclusion I III.3 ME & deformed RM deform. parameter vs EV window Dirac LSD for high-T QCD G-K-SMN-P ’13

III.3 ME & deformed RM deform. parameter vs EV window & size 24 G-K-SMN-P ’13

scale inv M.E. larger spatial vol scale inv M.E. III.3 ME & deformed RM 24 deform. parameter vs EV window & size G-K-SMN-P ’13 a=3.60

scale inv M.E. III.3 ME & deformed RM 24 deform. parameter vs EV window & size LSD at ME G-K-SMN-P ’13 larger spatial vol a=3.60

scale inv M.E. III.3 ME & deformed RM 24 deform. parameter vs EV window & size LSD at ME G-K-SMN-P ’13 larger spatial vol a=3.60

scale inv M.E. III.3 ME & deformed RM 24 deform. parameter vs EV window & size LSD at ME G-K-SMN-P ’13 larger spatial vol a=3.60

scale inv M.E. III.3 ME & deformed RM 24 deform. parameter vs EV window & size LSD at ME G-K-SMN-P ’13 larger spatial vol a=3.60

scale inv M.E. III.3 ME & deformed RM 24 deform. parameter vs EV window & size LSD at ME G-K-SMN-P ’13 larger spatial vol a=3.60

scale inv M.E. III.3 ME & deformed RM 24 deform. parameter vs EV window & size LSD at ME G-K-SMN-P ’13 larger spatial vol a=3.60

scale inv M.E. III.3 ME & deformed RM 24 deform. parameter vs EV window & size LSD at ME G-K-SMN-P ’13 larger spatial vol a=3.60

scale inv M.E. III.3 ME & deformed RM 24 deform. parameter vs EV window & size LSD at ME G-K-SMN-P ’13 larger spatial vol a=3.60

TDL : localized←ME→extended III.3 ME & deformed RM finite fraction of small EVs exists & localizes even in presence of very light quarks conclusion II 24 deform. parameter vs EV window & size G-K-SMN-P ’13 larger spatial vol a=3.60 scale inv M.E.

path along which the system crosses over RM → Poisson is universal ( indep of m q, T, a), almost follows 1-parameter deformed RM III.3 ME & deformed RM profile of LSD 25 G-K-SMN-P ’13 dRM ME Poisson ● RM ●

T pc consistent with disappearing localized mode T pc from Mobility Edge Kovacs-Pittler ’12 universal, linear increase with T III.4 Physical implication conclusion III mobility edge 171MeV 26

conjecture: localized modes are associated w/ defects of Polyakov loop Origin of localized modes smeared SU(2) Polyakov loop ⇔ localized mode of D OV III.4 Physical implications Bruckmann-Kovacs-Schierenberg ’11

EV density QCD D on L 3 × 1/T (<1/T c ) Anderson H on L 3 Summary MNS deformed RM : exact? theory of Anderson loc. a=3.60 a=3.55 ME : identical critical statistics /