最近の z~7-8 LBG 探査 2009 年 10 月 28 日 鍛治澤 賢. 最近の z~7-8 LBG 探査の論文紹介 HUDF: HST/WFC3 HUDF: HST/WFC3 GOODS-S: HST/WFC3 GOODS-S: HST/WFC3 GOODS-S: VLT/HAWK-I GOODS-S:

Slides:



Advertisements
Similar presentations
15 years of science with Chandra– Boston 20141/16 Faint z>4 AGNs in GOODS-S looking for contributors to reionization Giallongo, Grazian, Fiore et al. (Candels.
Advertisements

Collaborators: F. Bian, Z. Cai, B. Clement, S.H. Cohen, R. Dave, E. Egami, X. Fan, K. Finlator, N. Kashikawa, H.B. Krug, I.D. McGreer, M. Mechtley, M.
Properties of high redshift galaxies from 24 μm images Paola Santini Università di Roma “La Sapienza” Osservatorio Astronomico di Roma Scuola nazionale.
Collaborators: E. Egami, X. Fan, S. Cohen, R. Dave, K. Finlator, N. Kashikawa, M. Mechtley, K. Shimasaku, and R. Windhorst.
CLASH: Cluster Lensing And Supernova survey with Hubble ACS Parallels WFC3 Parallels 6 arcmin. = 2.2 z=0.5 Footprints of HST Cameras: ACS FOV in.
Searching for massive galaxy progenitors with GMASS (Galaxy Mass Assembly ultradeep Spectroscopic Survey) (a progress report) Andrea Cimatti (INAF-Arcetri)
Luminosity Density of Star- Forming Galaxies Giavalisco et al Presented by Brandon Patel.
Z ∼ 7 Galaxies in the HUDF: First Epoch WFC3/IR Results P.A. Oesch, R.J. Bouwens, G.D. Illingworth, C.M. Carollo, M. Franx, I. Labbé, D. Magee, M. Stiavelli,
Figure 5: Example of stacked images. Figure 6: Number count plot where the diamonds are the simulated data assuming no evolution from z=3-4 to z=5 and.
Subaru Observations of Galaxy Clusters at z
N HST ACS UDF Rychard Bouwens & Garth Illingworth Galaxies and Structures through Cosmic Times Luminosity function and SFRs at z=6-10: Galaxy Buildup in.
High Redshift Massive Galaxies (BzKs & EIS-Deep3a and COSMOS Xu KONG collaborators :
Galaxy Formation in the Early Universe Haojing Yan Center for Cosmology & AstroParticle Physics Ohio State University CCAPP Symposium 2009 October 14,
Venice – March 2006 Discovery of an Extremely Massive and Evolved Galaxy at z ~ 6.5 B. Mobasher (STScI)
The Properties of LBGs at z>5 Matt Lehnert (MPE) Malcolm Bremer (Bristol) Aprajita Verma (MPE) Natascha Förster Schreiber (MPE) and Laura Douglas (Bristol)
Photometric Catalog I-band selected photometric catalog containing ~800,000 galaxies (I (AB) < 26 mag) in 8 bands (UBVgRizK) Star-Galaxy separation using.
Image credit: ESO/NASA/ESA/JPL-Caltech Unveiling the astrophysics of high-redshift galaxy evolution.
Masami Ouchi (Space Telescope Science Institute) for the SXDS Collaboration Cosmic Web Made of 515 Galaxies at z=5.7 Kona 2005 Ouchi et al ApJ, 620,
Simulating Observations of z~2 galaxies with GLAO Yosuke Minowa, Ikuru Iwata (Subaru telescope) 2013/6/13-14 Subaru GLAO Science Hokkaido Univ.
Large Area Survey of Lyman Alpha Emitters Zheng Yale Center for Astronomy and Astrophysics Yale/WIYN One Degree Imager Survey Workshop Oct 3rd, 2009.
Z > 6 Surveys Represent the Current Frontier Motivation: - census of earliest galaxies (z=6,  =0.95 Gyr) - contribution of SF to cosmic reionization -
NAOKI YASUDA, MAMORU DOI (UTOKYO), AND TOMOKI MOROKUMA (NAOJ) SN Survey with HSC.
Masami Ouchi (STScI) Progress of the Wide-Field Deep Surveys for Galaxies at z=3-9.
Renzini Ringberg The cosmic star formation rate from the FDF and the Goods-S Fields R.P. Saglia – MPE reporting work of/with R. Bender, N.
Peter Capak Associate Research Scientist IPAC/Caltech.
3.SED Fitting Method Figure3. A plot between IRAC ch2 magnitudes (4.5  m) against derived stellar masses indicating the relation of the stellar mass and.
Culling K-band Luminous, Massive Star Forming Galaxies at z>2 X.Kong, M.Onodera, C.Ikuta (NAOJ),K.Ohta (Kyoto), N.Tamura (Durham),A.Renzini, E.Daddi (ESO),
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
1 VVDS: Towards a complete census of star formation at 1.4
KASI Galaxy Evolution Journal Club The Morphology of Passively Evolving Galaxies at z~2 from Hubble Space Telescope/WFC3 Deep Imaging in the Hubble Ultra.
The Quest for Ultra compact dwarfs (UCDs) Guillermo, Melanie, Emanuela, Micaela Tutor: Steffen Mieske Guillermo, Melanie, Emanuela, Micaela Tutor: Steffen.
High-Redshift Galaxies in Cluster Fields Wei Zheng, Larry Bradley, and the CLASH high-z search group.
1 Narrow-Band Imaging surveys at z=7.7 with WIRCam (CFHT) and HAWK-I (VLT) J.-G. Cuby (LAM) Collaborators : B. Clément (LAM), P. Hibon (KIAS) J.Willis.
Naoyuki Tamura (University of Durham) The Universe at Redshifts from 1 to 2 for Early-Type Galaxies ~ Unveiling “Build-up Era” with FMOS ~
Luminosity Functions from the 6dFGS Heath Jones ANU/AAO.
The European Extremely Large Telescope Studying the first galaxies at z>7 Ross McLure Institute for Astronomy, Edinburgh University.
Evidence of a Fast Evolution of the UV Luminosity Function of LBGs beyond z=6 from a wide and deep HAWK-I Survey Andrea Grazian INAF - Osservatorio Astronomico.
Finding z  6.5 galaxies with HST’s WFC3 and their implication on reionization Mark Richardson.
Z-FOURGE - the FourStar Galaxy Evolution Survey Status Report at the 1.3-year mark.
Garth Illingworth (UCO/Lick Obs & University of California, Santa Cruz) and the HUDF09 team AAS January 2010 Washington DC Science with the New HST The.
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
Cosmological Reionization -- Allahabad, India
High-Redshift Galaxies from HSC Deep Surveys Kazuhiro Shimasaku (University of Tokyo) 1. Galaxy Evolution 2. Dropout Galaxies and Lyman α Emitters 3. Observing.
Did Galaxies Reionize the Universe? Richard Ellis, Caltech CIFAR February 2010.
Clustering of BzK-selected galaxies in the COSMOS field Xu KONG collaborators : A. Renzini, E. Daddi, N. Arimoto, A. Cimatti , COSMOS.
WFC3 EBL Collaborators: –Tim Dolch, Ranga-Ram Chary, Asantha Cooray, Anton Koekemoer, Swara Ravindranath Near-Infrared Extragalactic Background Fluctuations.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
観測的宇宙論ゼミ 4/21 田中 ( 賢 ) 担当分 のおもしろかった話をかいつまみます。. Highlights from VVDS O. Le Fevre.
1 The outskirts of spiral galaxies as viewed by SDSS Ignacio Trujillo & Michael Pohlen.
The First Galaxies in the Hubble Frontier Fields Rachana Bhatawdekar, Christopher Conselice The University of Nottingham.
The First Galaxies in the Hubble Frontier Fields Rachana Bhatawdekar, Christopher Conselice The University of Nottingham.
Galactic Astronomy 銀河物理学特論 I Lecture 3-2: Evolution of Luminosity Functions of Galaxies Seminar: Lily et al. 1995, ApJ, 455, 108 Lecture: 2011/12/12.
Formation and evolution of early-type galaxies Pieter van Dokkum (Yale)
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
Deep Surveys for High-z Galaxies with Hyper Suprime-Cam M. Ouchi (OCIW), K. Shimasaku (U. Tokyo), H. Furusawa (NAOJ), & HSC Consortium ≲ ≳≲ ≳
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Elizabeth Stanway (UW-Madison) Andrew Bunker (Exeter) Star Forming Galaxies at z>5: Properties and Implications for Reionization With: Richard Ellis (Caltech)
Galaxies at z=6-9 from the WFC3/IR Imaging of the Hubble Ultra Deep Field Presented By Kyle Burns AST 494 March 5, 2009.
Galaxies as Sources of Reionization Haojing Yan (Carnegie Observatories) Reionization Workshop at KIAA July 10, 2008 Haojing Yan (Carnegie Observatories)
Nature of Broad Line Region in AGNs Xinwen Shu Department of Astronomy University of Science and Technology of China Collaborators: Junxian Wang (USTC)
Epoch of Reionization  Cosmic Reionization: Neutral IGM ionized by the first luminous objects at 6 < z < 15 Evidence: CMB polarization (Komatsu+2009)
Evolution of Rest-frame Luminosity Density to z=2 in the GOODS-S Field Tomas Dahlen, Bahram Mobasher, Rachel Somerville, Lexi Moustakas Mark Dickinson,
Galaxy Evolution and WFMOS
Nobunari Kashikawa (National Astronomical Observatory of Japan)
in a Large-Scale Structure at z=3.1
IES Cargesse – 18 September 2012
The Presence of Massive Galaxies at z>5
A Population of Old and Massive Galaxies at z > 5
Constraints on Star Forming Galaxies at z>6.5
Presentation transcript:

最近の z~7-8 LBG 探査 2009 年 10 月 28 日 鍛治澤 賢

最近の z~7-8 LBG 探査の論文紹介 HUDF: HST/WFC3 HUDF: HST/WFC3 GOODS-S: HST/WFC3 GOODS-S: HST/WFC3 GOODS-S: VLT/HAWK-I GOODS-S: VLT/HAWK-I SDF & GOODS-N: Subaru/Suprime-Cam SDF & GOODS-N: Subaru/Suprime-Cam COSMOS: UKIRT/WFCAM & CFHT/WIRCAM COSMOS: UKIRT/WFCAM & CFHT/WIRCAM Bouwens et al arXiv: Y-dropout UVLF Oesch et al arXiv: z-dropout UVLF Bunker et al arXiv: z-dropout UVLF McLure et al arXiv: photo-z SED fitting Labbe et al arXiv: IRAC stellar mass Oesch et al arXiv: morphology Wilkins et al arXiv: z-dropout Castellano et al arXiv: z-dropout Hickey et al arXiv: Y&z-dropout Ouchi et al arXiv: z-dropout Capak et al arXiv: z-dropout

Lyman break feature Lyman break

z=0.5z=1.0 z=1.5 z=3.0

Lyman Break Galaxies U-dropout z~3 G-dropout z~4

Previous studies of z~7 LBGs Bouwens et al HST/NICMOS J&H-bands data limiting mag. ~ ABmag

最近の z~7-8 LBG 探査の論文紹介 HUDF: HST/WFC3 HUDF: HST/WFC3 GOODS-S: HST/WFC3 GOODS-S: HST/WFC3 GOODS-S: VLT/HAWK-I GOODS-S: VLT/HAWK-I SDF & GOODS-N: Subaru/Suprime-Cam SDF & GOODS-N: Subaru/Suprime-Cam COSMOS: UKIRT/WFCAM & CFHT/WIRCAM COSMOS: UKIRT/WFCAM & CFHT/WIRCAM Bouwens et al arXiv: Y-dropout UVLF Oesch et al arXiv: z-dropout UVLF Bunker et al arXiv: z-dropout UVLF McLure et al arXiv: photo-z SED fitting Labbe et al arXiv: IRAC stellar mass Oesch et al arXiv: morphology Wilkins et al arXiv: z-dropout Castellano et al arXiv: z-dropout Hickey et al arXiv: Y&z-dropout Ouchi et al arXiv: z-dropout Capak et al arXiv: z-dropout

Bouwens et al. arXiv: HUDF HST/WFC3 による Y-dropout 探査 HUDF HST/WFC3 による Y-dropout 探査 Hubble Ultra Deep FieldHST/ACS z-band image HST/NICMOS J&H-bands HST/WFC3 Y, J, H-bands VLT/ISAAC Magellan/PANIC Ks-band Ultra deep HST/ACS optical images McLure et al.

HST/WFC3 WFC3 instrumental handbook

HST/WFC3

Bouwens et al. arXiv: HST/WFC3 data HST/WFC3 data F105W ( Y ) orbits F125W ( J ) orbits F160W ( H ) orbits HUDF09 program first epoch data (two UDF05 fields will be also observed in 2010) PSF FWHM ~ 0.2” 5σ 0.4” diameter ~ 29ABmag (1 orbit ~ 40min) HST/ACS data B, V, i, z -bands ~ ABmag (August 26 ~ September 6, 2009) ~ 4.7 arcmin 2

Bouwens et al. arXiv: Y-dropout selection Y-dropout selection Source detection Color selection J + H combined image >5.5σ in J band Y-J > 0.8 J-H < 0.5 J-H < ×(Y-J) no detection (<2σ) in B,V,i,z (those with 1.5~2σ detection in more than one optical band were rejected)

Bouwens et al. arXiv: selected z~8 candnoidates selected z~8 candnoidates 5 candidates blue J-H color (UV slope β<~-2.5) >5σ in J & >4σ in H All WFC3 data were obrained in 12days brown dwarfs are more bluer and rare Simulation with 24.5~26mag objects Possible contaminants  Not spurious objects  Not SNe  Not galactic stars  the expected number of, contaminants by photometric scatter is very small (<~0.2)

Bouwens et al. arXiv: selected z~8 candidates selected z~8 candidates 5 candidates blue J-H color (UV slope β<~-2.5) H~ mag half light radius ~ 0.15” (~0.7h -1 (~PSF)

Bouwens et al. arXiv: Number counts Number counts Expected number for no LF evolution (1+z) -1 size evolution from z~4 UV slope β=-2.5±0.4 are assumed. z~6 i-dropout LF  24 Y-dropouts z~7 z-dropout LF  11 Y-dropouts (~70% statistical error ~35% field-to-field variance) Observed number is lower (~1σ level)

Bouwens et al. arXiv: Evolution of UV LF Evolution of UV LF Extraoplation of UV LF at z<7 to z~8  M * UV ~-19.45, φ * ~0.0011Mpc -3, α~-1.74 good agreement with the observed results Fit M * UV with the observed data φ * ~0.0011Mpc -3, α~-1.74 are assumed M * UV = -19.3±0.3 M * UV = M * UV = Stepwise LF  weak evolution at -19~-18 mag  strong evolution of M* (?)

Bouwens et al. arXiv: SFR density at z~8 SFR density at z~8 Integrate the stepwise UV LF  UV luminosity density unobscured SFR density (and dust correction with those estimated at z~5-6 )

z~6-9 galaxy search with HUDF HST/WFC3 z~6-9 galaxy search with HUDF HST/WFC3 McLure et al. arXiv: HST/WFC3 HST/ACS Spizter/IRAC HST/ACS z-band image HST/NICMOS J&H-bands HST/WFC3 Y, J, H-bands VLT/ISAAC Magellan/PANIC Ks-band McLure et al. Bouwens et al. と同じデータを独立に処理 PSF FWHM ~ 0.15”(Y), 0.16”(J), 0.18”(H) 5σ diameter ~29ABmag 5σ diameter ~29mag (~28mag for z-band) 5σ limit ~25.9(3.6μm) 25.5(4.5μm) 23.3(5.8μm) 22.9(8.0μm)

Sample selection Sample selection McLure et al. arXiv: Source detection Photometric redshift detection in at least one of YJH-bands No detection (2σ) in i-band  300 objects BVizYJH-bands & 4.5μm upper limit χ 2 distribution  z>5.9 candidates Charlot & Bruzal 2007 templates + empirical U-dropout spectra  49 candidates 〇 : z>7 candidates

Sample selection Sample selection McLure et al. arXiv: Photometric redshift Charlot & Bruzual 2007 templates + empirical U-dropout spectra τ=0.1~10Gyr Calzetti extinction Av=0~2mag 1 solar metallicity Salpeter IMF example χ 2 distribution  z>5.9 candidates  49 candidates zYJH

Sample selection Sample selection McLure et al. arXiv: SED magnitude χ 2 distribution  visual check spurious artifact Transient object The brightest candidate  SN or other transient soruce Contamination by T dwarfs  ~0.5 down to z=29ABmag in 4.5arcmin 2 WFC3 field (not detected at all in NICMOS images)

Selected sample Selected sample McLure et al. arXiv: z>6 candidates No detection in i-band  incomplete at 5.9<z<6.25 including 15 out of 16 z-dropouts in Oesch et al. all 5 Y-dropouts in Bouwens et al. The faintest z-dropout candidate in Oesch et al. + additional 15 z>6.25 candidates

extremely high-z sample extremely high-z sample McLure et al. arXiv: z>7 candidates 8 z>7.5 candidates 3 z>8 candidates 〇 : z>7 candidates Including 5 Y-dropouts in Bouwens et al. these 5 have acceptable secondary peak at z~1.6 4 z>7.8 candidates occur in two pairs J~28-29mag

extremely high-z sample extremely high-z sample McLure et al. arXiv: z>7 candidates 8 z>7.5 candidates 3 z>8 candidates Including 5 Y-dropouts in Bouwens et al. these 5 have acceptable secondary peak at z~1.6 4 z>7.8 candidates occur in two pairs J~28-29mag

extremely high-z sample extremely high-z sample McLure et al. arXiv: z>7 candidates 8 z>7.5 candidates 3 z>8 candidates Including 5 Y-dropouts in Bouwens et al. these 5 have acceptable secondary peak at z~1.6 4 z>7.8 candidates occur in two pairs For the faintest candidates (J, H ~29), no detection in optical ACS images is not sufficient to pick up Lyman break exclusively. J~28-29mag

UV luminosity function UV luminosity function McLure et al. arXiv: redshift probability distribution + 1/Vmax method 6.5<z< <z<8.5 z~7 UVLF z~8 UVLF M * 1500 ~ Φ * ~ Mpc -3 α ~ similar shape with z~6 UVLF number density evolution of a factor of ~2.5 from z~6 cannot constrain the shape of UVLF Number density at M1500~-19.5 is a factor of ~2 smaller than at z~7

Castellano et al. arXiv: z-dropout search in GOODS-S with HAWK-I z-dropout search in GOODS-S with HAWK-I Great Observatories Origins Deep Survey - South deep HST/ACS optical images deep Spizter/IRAC MIR images deep VLT/ISAAC NIR images Chandra Spitzer/MIPS

Castellano et al. arXiv: VLT/HAWK-I data VLT/HAWK-I data HAWK-I 7.5’ x 7.5’ F.O.V 0.106”/pix Y-band 2 pointings Science Verification & ESO Large Program GOODS hour 0.514” FWHM GOODS hour 0.489” FWHM ~89.7arcmin 2 ~100% complete at Y~26.2 ~30%compete at Y~26.8 spurious source negligible at Y<26.5 ~10% at Y~26.8 VLT/VIMOS U, R-bands (29.1, 29.5) HST/ACS B, V, i, z-bands(29.0, 29.1,28.6,28.2) VLT/ISAAC J, H, K-bands (26.6,26.2,26.2) 1σ limit Multi-wavelength data

Castellano et al. arXiv: sample selection sample selection Y-selected Y<26.7 Y-J>1.0 ACS z-band HAWK-I Y-band detect z>6.5 Lyα break

Castellano et al. arXiv: sample selection sample selection Y-selected Y<26.7 Y-J>1.0 Y-J<1.5 & Y-K<2.0 detect z>6.5 Lyα break reject old/dusty galaxies at z~1-4

Castellano et al. arXiv: sample selection sample selection Y-selected Y<26.7 Y-J>1.0 Y-J<1.5 & Y-K<2.0 No detection in optical detect z>6.5 Lyα break reject old/dusty galaxies at z~1-4 One of interlopers with z-Y>1 <2σ in all UBVRI-bands <1σ in at least four of UBVRI-bands 139  9 candidates

Castellano et al. arXiv: Simulation for sample selection Simulation for sample selection add artificial objects with Y= at z=5.5-8 (assuming size and LF of z~5.5-6 LBGs)

Castellano et al. arXiv: Selected candidates Selected candidates 9 z~7 candidates 1 known cool dwarf is rejected (relatively red Y-J color) expected contamination  ~3.4 cool dwarfs for 2 HAWK-I F.O.V. another one which is not detected in the deep NICMOS H-band (Y-H<-1) is rejected  7 candidates

Castellano et al. arXiv: B+V+izYJ+H+KF110WF160W3.6μm

Castellano et al. arXiv: Selected candidates Selected candidates stacking of 7 candidates  z phot =6.80

Castellano et al. arXiv: Number Counts Number Counts Observed number counts of z~6.8 LBGs are smaller than predictions from z~6 LFs. (No evolution for UV LF between z~6 and z~6.8)  UV LF seems to evolve between z~6 and z~6.8

Castellano et al. arXiv: UV luminosity function UV luminosity function Assumed UV Luminosity function simulation (source detection, color selection) Expected z-dropout number counts Observed number counts Maximum likelihood Φ* = ×10 -3 Mpc -3 M*(1500 Å ) = ±0.45 assuming α=-1.71

Castellano et al. arXiv: Evolution of UV LF Evolution of UV LF d(logΦ*)/dz = -0.59±0.25 dM*/dz = 0.13±0.51 Evolution between z~6 and z~6.8 Φ* = ×10 -3 Mpc -3 M*(1500 Å ) = ±0.45 assuming α=-1.71 ρ UV = ×10 25 erg/s/Hz/Mpc 3 UV luminosity density  a factor of ~3.5 lower than at z~6 rule out no evolution between z~6 and z~6.8 at 99% confidence level

Ouchi et al. arXiv: z-dropout search in SDF & GOODS-N with Subaru/S-Cam z-dropout search in SDF & GOODS-N with Subaru/S-Cam GOODS-North Subaru Deep Field

Ouchi et al. arXiv: Suprime-Cam data Suprime-Cam data y (z R )-band 2 fields arcmin 2 Subaru Deep Field 26 hours 810 arcmin 2 GOODS-North 33 hours 758 arcmin 2 3σ 1.8” diameter SDF 26.4 ABmag GOODS-N 26.2 ABmag Other bands SDF BVR + z’ GOODS-N UBVR + z’ z-band 3σ limit SDF 27.7 mag GOODS-N 26.9 mag

Ouchi et al. arXiv: Sample selection Sample selection y-selected samaple >4σ limit SDF y<26.1 GOODS-N y<25.9 z’-y > 1.5 no detection in UBVR-bands (<2σ) selection for z>6.5 galaxies possible contamination by cool dwarfs (no selection by Y-J color) <2σ limit SDF 29.4(B), 28.6(V), 28.8(R) GOODS-N 27.3(U), 28.0(B), 26.7(V), 27.0(R)

Ouchi et al. arXiv: Selected candidates Selected candidates GOODS-NSDF 15+7=22 candidates all candidates have y>25.4mag 1 (brightest) candidate  z spec =6.96

Ouchi et al. arXiv: Selected candidates Selected candidates detection completeness

Ouchi et al. arXiv: UV luminosity fobunction UV luminosity fobunction 22 candidates Expected contamination ~1 spurious source ~0.1 transient object ~1 lower-z galaxies with photometric error ~8 L/T-type dwarfs redshift selection function UV luminosity function signifincantly decreases from z~6 at bright magnitude

Ouchi et al. arXiv: UV luminosity function UV luminosity function Subaru/Scam + HST/NICMOS Φ* = ×10 -3 Mpc -3 M* = -19.9±0.7 α = -1.66±1.32 Evolution between z~6 and z~7 at >2σ level The decrease of L* is dominant factor ?

Ouchi et al. arXiv: UV luminosity density UV luminosity density integrating UV LF ×10 26 erg/s/Hz/Mpc ×10 -3 M ◎ /yr/Mpc 3 SFR density evolution of a factor of >10 between z~2-3 and z~7 SFRD decreases even from z~6 to z~7.

Ouchi et al. arXiv: Spatial distribution Spatial distribution strong clustering of z~7 LBGs especially for UV bright LBGs

Summary RedshiftFieldTelescope/ Instrument Area (arcmin 2 ) Limit mag (AB) Number of candidates Y-dropout (z~8) HUDFHST/WFC3~4.7H<29.2~5 z-dropout (z~7) HUDFHST/WFC3~4.7J<29~15 GOODS-SHST/WFC3~20Y<27~6 GOODS-SVLT/HAWK-I~90Y<26.7~7 GOODS-N&SDFSubaru/SCam~1568Y<26~22 (~12) UV luminosity density (LBG number density) z~6 (i-dropout) z~7 (z-dropout) z~8 (Y-dropout) factor of 2~3.5 decrease factor of 2~3 decrease

おまけ

Oesch et al. arXiv: Size evolution Surface SFR density

Labbe et al. arXiv: Stacking analysis with IRAC data Stellar mass of z&Y-dropouts Evolution of stellar mass density