Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
Thermonuclear Supernovae Lifan Wang Texas A&M University Oct 6, 2013.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Massive-Star Supernovae as Major Dust Factories Ben E. K. Sugerman, Barbara Ercolano, M. J. Barlow, A. G. G. M. Tielens, Geoffrey C. Clayton, Albert A.
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Star Formation and H2 in Damped Lya Clouds
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
On Dust in the Early Universe Takaya Nozawa (IPMU, University of Tokyo) 2010/07/29 Contents: 1. Observations of dust at high-z 2. Formation of dust in.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Unburned carbon in SNe Ia as viewed from (non-)formation of C grains Takaya Nozawa (IPMU, University of Tokyo) 2011/04/13 Condensation efficiency of carbon.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
Core-collapse supernovae as dust producers: what Spitzer is telling us
NAOJ, Division of theoretical astronomy
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Kavli IPMU, University of Tokyo
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H. Umeda (Univ. of Tokyo) N. Tominaga (Konan Univ./IPMU) M. Tanaka (IPMU) T. Suzuki (Univ. of Tokyo) M. Limongi (INAF/IPMU) H. Hirashita (ASIAA) I. Sakon (Univ. of Tokyo) T. Onaka (Univ. of Tokyo) T. T. Takechi (Nagoya Univ.) T. T. Ishi (Kyoto Univ.) A. Habe (Hokkaido Univ.) E. Dwek (NASA) O. Krause (MPIA) Collaborators;

1-1. Introduction SNe are important sources of interstellar dust? - Theoretical studies : M sun in Type II-P SNe (Todini & Ferrara 2001; Nozawa et al. 2003) ➔ M sun of dust per SN is required to form to explain a large content of dust at high-z galaxies (Morgan & Edmunds 2003; Dwek et al. 2007) - Observations of dust-forming SNe : < M sun (e.g., Meikle et al. 2007, Kotak et al. 2009) sophisticate radiation transfer model taking account of dust distribution in the ejecta to estimate dust mass (Sugarmann et al. 2006; Ercolano et al. 2007) how dust formation process depends on SN type?

1-2. Classification of supernovae Heger et al. (2003) At high (solar) metallicity ・ Type II-P SNe: M ZAMS =8-25 M sun ? massive H envelpe ・ Type IIb SNe: M ZAMS = M sun ? very thin H-envelope ・ Type Ib/Ic SNe : M ZAMS > 35 M sun ? no H / He envelope ・ Type Ia SNe : thermonuclear explosion of C+O white dwarfs M pre-explosion ~ 1.4 M sun At low metallicity (Z < Z sun ) ・ Type II-P SNe: M ZAMS =8-40 M sun ・ pair-instability SNe: M ZAMS = M sun little mass loss significant mass loss

2-1. Dust formation in primordial SNe (Nozawa et al. 2003, ApJ, 598, 785) ・ nucleation and grain growth theory (Kozasa & Hasegawa 1988) ・ no mixing of elements within the He-core ・ complete formation of CO and SiO, sticking probability=1 〇 Population III SNe model (Umeda & Nomoto 2002) ・ SNe II-P : M ZAMS = 13, 20, 25, 30 M sun (E 51 =1) ・ PISNe : M ZAMS = 170 M sun (E 51 =20), 200 M sun (E 51 =28) M env ~ 12 M sun M env ~ 90 M sun

2-2. Dust formed in primordial SNe ・ Various dust species (C, MgSiO 3, Mg 2 SiO 4, SiO 2, Al 2 O 3, MgO, Si, FeS, Fe) form in the unmixed ejecta, according to the elemental composition of gas in each layer ・ The condensation time: days for SNe II-P days for PISNe

2-3. Size distribution spectrum of dust ・ grain radii range from a few A up to 1 μm ・ average dust radius is smaller for PISNe than SNe II-P amount of newly formed dust grains SNe II-P : M dust = M sun, f dep = M dust / M metal = PISNe : M dust =20-40 M sun, f dep = M dust / M metal =

2-4. Total mass and size of surviving dust Total dust mass surviving the destruction in Type II-P SNRs; M sun (n H,0 = cm -3 ) (Nozawa et al. 2007, ApJ, 666, 955) Size distribution of surviving dust is domimated by large grains (> 0.01 μm)

2-5. Flattened extinction curves flat extinction curve at high-z ! Li et al. (2008) z=0.69 z=4 z=0.54 z=1.16 (Hirashita, T. N., et al. 2008, MNRAS, 384, 1725) 20 M sun 170 M sun

3-1. Dust formation in Type IIb SN ○ SN IIb model (SN1993J-like model) - M H-env = 0.08 M sun M ZAMS = 18 M sun M eje = 2.94 M sun - E 51 = 1 - M( 56 Ni) = 0.07 M sun (Nozawa et al. 2010, ApJ, 713, 356)

3-2. Dust formed in Type IIb SN condensation time - condensation time of dust d after explosion - total mass of dust formed ・ M sun in SN IIb ・ M sun in SN II-P average radius 0.01 μm - the radius of dust formed in H-stripped SNe is small ・ SN IIb without massive H-env ➔ a dust < 0.01 μm ・ SN II-P with massive H-env ➔ a dust > 0.01 μm

3-3. Destruction of dust in Type IIb SNR Almost all newly formed grains are destroyed in shocked gas within the SNR for CSM gas density of n H > 0.1 /cc ➔ small radius of newly formed dust ➔ early arrival of the reverse shock at the He core n H,1 = 30, 120, 200 /cc ➔ dM/dt = 2.0, 8.0, 13x10 -5 M sun /yr for v w =10 km/s constant-density CSMstellar-wind CSM 330 yr

observed IR SED can be well reproduced ! ↑ ・ M d,warm ~ M sun ・ M d,cool ~ 0.07 M sun with T dust ~ 40 K AKARI reduced 90μm image ➔ centrally peaked cool dust component ↓ M d,cool = M sun with T dust = K Sibthorpe et al Comparison with observations of Cas A

4-1. Peculiar dust-forming SN : SN 2006jc ・ re-brightning of NIR ・ rapid decline of optical light ・ blueshift of He I narrow lines ongoing formation of dust from ~50 days in SN2006jc Di Calro et al. (2008) Tominaga et al. (2008) 800K aC Sakon et al. (2008) ・ at days ➔ C grains of ~1600 K ・ at 220 days ➔ C grains of 800 K

4-2. Dust formation in Type Ib SN : SN 2006jc ○ SN 2006jc model (Tominaga et al. 2008) - M eje = 4.9 M sun (M ZAMS = 40 M sun ) - E 51 = 10 (hypernova-like) - M( 56 Ni) = 0.22 M sun The quick decrease of gas temperature ➔ C grains can form at days in outermost ejecta (Nozawa et al. 2008, ApJ, 684, 1343)

4-3. Average radius and temperature of dust - Average radius of dust is smaller than 0.01 μm because of the low gas density at dust formation average radius - Temperature of C grains ・ at 60 days ➔ K ・ at 200 days ➔ K dust temperature 0.01 μm

4-4. IR spectral energy distribution ・ fitting of IR SED C grains ➔ 5.6 x M sun FeS grains ➔ 2 x M sun ・ mass of cold silicates and oxides cannot be constrained optical thin case can underestimate dust mass best fitted result

5-1. Dust formation in Type Ia SN : W7 model ○ Type Ia SN model W7 model (C-deflagration) (Nomoto et al. 1984) - M eje = 1.38 M sun - E 51 = 1.3 - M( 56 Ni) = 0.56 M sun (Nozawa et al. in preparation)

condensation timeaverage radius 5-2. Dust formation in Type Ia SN ・ condensation time: days ・ average radius of other dust species : < 0.01 μm because of low density of gas in the expanding ejecta ・ Fe grains cannot condense significantly < M sun 0.01 μm

There is no evidence that C are detected in SN Ia If we ignore C grains in SN Ia M dust ~ 0.03 M sun, consisting of silicate in Type Ia 5-3. Mass of dust formed in Type Ia SN Mass of major dust C : 0.03 M sun Silicate : 0.03 M sun FeS : 0.02 M sun Si : 0.06 M sun Total : 0.14 M sun ・ early formation of dust at days ・ high M(56Ni) of ~0.6 M sun ➔ dust formation can be affected by strong radiation field in the ejecta ➔ Si and FeS are inhibited

・ Type II SNe and PISNe Average grain radii are larger than 0.01 μm ➔ primordial SNe may be important sources of dust ・ Type IIb, Type Ib/Ic, and Type Ia SNe Average grain radii are smaller than 0.01 μm ➔ envelope-stripped SNe may not be major sources of dust in future work mixing of elements, formation of molecules such as CO and SiO, sticking probability of atom, effects of radiation field in the ejcta, non-spherical and/or clumpy structure … Summary of this talk