Deliverablesobservables what we learn requirementscomments/competition HP13 (2015) Test unique QCD predictions for relations between single-transverse.

Slides:



Advertisements
Similar presentations
Low x meeting, Sinai Alice Valkárová on behalf of H1 collaboration LOW x meeting 2005, Sinaia H1 measurements of the structure of diffraction.
Advertisements

Longitudinal Spin at RHIC 29 th Winter Workshop on Nuclear Dynamics February 7, 2013 Cameron McKinney.
Elke, Ernst and Huan 1.  Identified the key physics questions for pp and pA LoI  Regular meeting Friday 11:00 am First Face-to-Face Meeting: January.
Xiaorong Wang, Heavy Flavor Workshop at UIC, June, Heavy Flavor and Spin Program at Xiaorong Wang New Mexico State University Heavy Flavor workshop.
Probing the Spin Structure of the Proton at STAR
Jet probes of nuclear collisions: From RHIC to LHC Dan Magestro, The Ohio State University Midwest Critical Mass October 21-22, 2005.
Constraining the polarized gluon PDF in polarized pp collisions at RHIC Frank Ellinghaus University of Colorado (for the PHENIX and STAR Collaborations)
Low-x LHC Prof. Brian A. Cole Columbia University.
J. Seele - WWND 1 The STAR Longitudinal Spin Program Joe Seele (MIT) for the Collaboration WWND 2009.
Mar. 17, 2006 Imran Younus Probing Gluon Polarization with Longitudinally Polarized p+p Collisions at  s = 200 GeV.
New States of Matter and RHIC Outstanding questions about strongly interacting matter: How does matter behave at very high temperature and/or density?
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Stony Brook, Dec Physics Topics Working.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
E.C. Aschenauer for the STAR Collaboration arXiv:
Future Opportunities at an Electron-Ion Collider Oleg Eyser Brookhaven National Laboratory.
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
Experimental Approach to Nuclear Quark Distributions (Rolf Ent – EIC /15/04) One of two tag-team presentations to show why an EIC is optimal to access.
E.C. Aschenauer DNP-2012 HP Town Hall 2 RHICRHICRHICRHIC NSRL LINAC Booster AGS Tandems STAR PHENIX Jet/C-Polarimeters RF EBIS ERL Test Facility CeC-TF.
Xiaodong Jiang Gluon spin with longitudinal asymmetries at RHIC. Parton angular motion - transverse spin asymmetries. Spin at RHIC : p+p. Spin at JLab:
Columbia University Christine Aidala September 4, 2004 Solving the Proton Spin Crisis at ISSP, Erice.
Longitudinal Spin Physics at RHIC and a Future eRHIC Brian Page Brookhaven National Laboratory CIPANP 2015 – Vail, CO.
New results on SIDIS SSA from JLab  Physics Motivation  Double spin asymmetries  Single Spin Asymmetries  Future measurements  Summary H. Avakian.
 200 GeV longitudinal polarized pp  increase statistics on A LL jets and di-jets at mid rapidity  explore A LL in FMS  200 GeV transverse polarised.
STAR Spin Related Future Upgrades STAR Spin Physics Program Current Capabilities Heavy Flavor Physics W Program Transverse Program Upgrades: Plans & Technologies.
PANIC05 M. Liu1 Probing the Gluon Polarization with A LL of J/  at RHIC Ming X. Liu Los Alamos National Lab (PHENIX Collaboration)
Spin Physics with PHENIX (an overview, but mainly  G) Abhay Deshpande Stony Brook University RIKEN BNL Research Center July 28, 2011.
16/04/2004 DIS2004 WGD1 Jet cross sections in D * photoproduction at ZEUS Takanori Kohno (University of Oxford) on behalf of the ZEUS Collaboration XII.
Spin structure of the nucleon
Transverse Spin Physics with PHENIX 1 Transverse Spin Physics with the current PHENIX K. Oleg Eyser UC Riverside RHIC Spin: The next decade May 14-16,
E.C. Aschenauer Why run top-energy p+p in run-16 2 Transverse momentum dependent parton distribution functions  initial state effects  important in.
E.C. Aschenauer & M. Stratmann arXiv: &
QCD at LHC with ATLAS Theodota Lagouri Aristotle University of Thessaloniki (on behalf of the ATLAS collaboration) EPS July 2003, Aachen, Germany.
General Discussion some general remarks some questions.
Key measurements for polarized pp scattering E.C. Aschenauer pp-pA-LoI f2f, January deliverablesobservables what we learn requirementscomments/competition.
1 E.C. Aschenauer Recent results from lepton proton scattering on the spin structure of the nucleon.
 E.C. Aschenauer BUR-16&16, April polarisation: 60% 250 GeV: Other Info: Talk by Wolfram:
Searching for Polarized Glue at Brian Page – Indiana University For the STAR Collaboration June 17, 2014 STAR.
lets assume dynamic  * works  can gain 2x lumi per 2013 fill impact of no 500 GeV running between 2013 and 2016 unknown 
Recent Documents: Spin WP for Tribble committee: arXiv: LEP Spin WP: arXiv: STAR and PHENIX pp & pA LoIs:
1 P. Djawotho & E.C. Aschenauer. Executive Summary 2015  Charge from Berndt Müller: Prepare for 15 or 22 cryo-weeks scenarios at √s=200 GeV  15 cryo-weeks.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Spin physics with STAR at RHIC
1 Spin Physics with STAR at RHIC 徐庆华, 山东大学 威海, Introduction STAR longitudinal spin program: results and future STAR transverse spin program:
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
The Color Glass Condensate and Glasma What is the high energy limit of QCD? What are the possible form of high energy density matter? How do quarks and.
Isabell-A. Melzer-Pellmann DIS 2007 Charm production in diffractive DIS and PHP at ZEUS Charm production in diffractive DIS and PHP at ZEUS Isabell-Alissandra.
Implications for LHC pA Run from RHIC Results CGC Glasma Initial Singularity Thermalized sQGP Hadron Gas sQGP Asymptotic.
1 P. Djawotho & E.C. Aschenauer. Longitudinal polarized pp in 2014  the polarized pp running in 200 GeV should be longitudinal  main goal is.
Forward di-jet production in p+Pb collisions Centre de Physique Théorique Ecole Polytechnique & CNRS Cyrille Marquet A. van Hameren, P. Kotko, K. Kutak,
Forward/p+A Update June 2005 Carl Gagliardi, Mike Leitch, Kirill Tuchin.
Saturation physics with an ALICE-like detector at FHC Some numbers and ideas – a discussion-starter Marco van Leeuwen, Nikhef.
1 Small x and Forward Physics in pp/pA at RHIC STAR Forward Physics FMS Steve Heppelmann Steve Heppelmann Penn State University STAR.
Transverse Spin Physics with an Electron Ion Collider Oleg Eyser 4 th International Workshop on Transverse Polarisation Phenomena in Hard Processes Chia,
Non-Prompt J/ψ Measurements at STAR Zaochen Ye for the STAR Collaboration University of Illinois at Chicago The STAR Collaboration:
EIC NAS review Charge-2 What are the capabilities of other facilities, existing and planned, domestic and abroad, to address the science opportunities.
Flavor decomposition at LO
Explore the new QCD frontier: strong color fields in nuclei
Physics of the EIC Cyrille Marquet Theory Division - CERN.
EIC NAS review Charge-2 What are the capabilities of other facilities, existing and planned, domestic and abroad, to address the science opportunities.
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Physics with Nuclei at an Electron-Ion Collider
Future upgrades of PHENIX
First physics from the ALICE electromagnetic calorimeters
PheniX, STAr AND AN EIC E.C. Aschenauer
Selected Physics Topics at the Electron-Ion-Collider
fsPHENIX and Hadron Calorimeters
Forward spin + cold nuclear measurements and forward Calorimetry
Transverse Spin Physics at RHIC II
The Helicity Structure of the Nucleon from Lepton Nucleon Scattering
Presentation transcript:

deliverablesobservables what we learn requirementscomments/competition HP13 (2015) Test unique QCD predictions for relations between single-transverse spin phenomena in p-p scattering and those observed in deep- inelastic lepton scattering. A N for  (?), W +/-,Z 0, DY Do TMD factorization proofs hold. Are the assumptions of ISI and FSI color interactions in pQCD are attractive and repulsive, respectively correct high luminosity trans pol pp at √s=500 GeV DY: needs instrumentation to suppress QcD backgr. by 10 6 at 3<y<4 A N DY: >=2020 might be to late in view of COMPASS A N W,Z: can be done earlier, i.e HP13 (2015) and flavor separation A N for  charged identified(?) hadrons, jets and diffractive events in pp and pHe-3 underlying subprocess causing the big A N at high x f and y high luminosity trans pol pp at √s=200 GeV, (500 GeV jets ?) He-3: 2 more snakes; He-3 polarimetry; full Phase-II RP the origin of the big A N at high x f and y is a legacy of pp and can only be solved in pp what are the minimal observables needed to separate different underlying subprocesses transversity and collins FF IFF and A UT for collins observables, i.e. hadron in jet modulations A TT for DY TMD evolution and transversity at high x cleanest probe, sea quarks high luminosity trans pol pp at √s=200 GeV & 500 GeV how does our kinematic reach at high x compare with Jlab12 A TT unique to RHIC flavour separated helicity PDFs polarization dependent FF A LL for jets, di-jets, h/  -jets at rapidities > 1 D LL for hyperons  g(x) at small x  s(x) and does polarization effect fragmentation high luminosity long. pol pp at √s=500 GeV Forward instrumentation which allows to measure jets and hyperons. Instrumentation to measure the relative luminosity to very high precision eRHIC will do this cleaner and with a wider kinematic coverage Searches for a gluonic bound state in central exclusive diffraction in pp PWA of the invariant mass spectrum in p+p  p’M X p’ in central exclusive production can exotics, i.e. glue balls, be seen in pp high luminosity pp at √s=200 GeV & 500 GeV full Phase-II RP how does this program compare to Belle-II & PANDA Key measurements for polarized pp scattering

deliverablesobservables what we learn requirementscomments/competition DM8 (2012) determine low-x gluon densities via p(d) A direct photon potentially correlations, i.e. photon-jet initial state g(x) for AA-collisions A-scan LHC and inclusive DIS in eA eA: clean parton kinematics LHC wider/different kinematic reach; NA61 impact parameter dependent g(x,b) c.s. as fct. of t for VM production in UPC (pA or AA) initial state g(x,b) for AA-collisions high luminosity, clean UPC trigger LHC and exclusive VM production in eA eA: clean parton kinematics LHC wider/different kinematic reach “saturation physics” di-hadron correlations,  -jet, h-jet & NLO DY, diffraction pT broadening for J/Ψ & DY -> Q s is the initial state for AA collisions saturated measurement of the different gluon distributions CNM vs. WW capability to measure many observables precisely large rapidity coverage to very forward rapidities polarized pA A scan complementary to eA, tests universality between pA and eA CNM effects R pA for many different final states K 0, p, K, D 0, J/Ψ,.. as fct of rapidity and collision geometry is fragmentation modified in CNM heavy quarks vs. light quarks in CNM A scan to tag charm in forward direction   -vertex separation of initial and final state effects only possible in eA long range rapidty correlations “ridge” two-particle correlation at large pseudo-rapidity  do these correlations also exist in pA as in AA tracking and calorimetry to very high rapidities interesting to see the √s dependence of this effect compared to LHC is GPD E g different from zero A UT for J/Ψ through UPC Ap ↑ GPD E g is responsible for L g  first glimpse unique to RHIC till EIC turns on underlying subprocess for A N (  0 ) A N for  0 and  underlying subprocess for A N (  0 ) sensitivity to Q s good  0 and  reconstruction at forward rapidities resolving a legacy in transversely polarized pp collisions Key measurements for p ↑ A scattering