RCS simulation 現状 と 今後 平成1 8 年 4 月14日 發知. Comparison with Machida’s result Machida’s result (6.72, 6.35) 181 INJ., 0.6 W/O CC W/ CC W/ Mult. of.

Slides:



Advertisements
Similar presentations
Current Status of Virtual Accelerator at J-PARC 3 GeV Rapid Cycling Synchrotron H. Harada*, K. Shigaki (Hiroshima University in Japan), H. Hotchi, F. Noda,
Advertisements

Updates BI-TL MADX Optics Studies C. Bracco. Next Steps from last meeting BHZ40 Nominal beta, -1.4 m dispersion.
Space Charge meeting – CERN – 09/10/2014
1 Optics and IR design for SuperKEKB Y.Ohnishi 1/19-22, 2004 Super B Factory Workshop in Hawaii.
Beam dynamics meeting, 2007/05/14Lars Fröhlich, MPY Dark Current Transport at FLASH Start-to-end tracking simulation analysis of beam and dark current.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
100 MeV- 1 GeV Proton Synchrotron for Indian Spallation Neutron Source Gurnam Singh Beam Dynamics Section CAT, Indore CAT-KEK-Sokendai School on Spallation.
FFAG-ERIT R&D 06/11/06 Kota Okabe (Kyoto Univ.) for FFAG-DDS group.
FFAG-ERIT Accelerator (NEDO project) 17/04/07 Kota Okabe (Fukui Univ.) for FFAG-DDS group.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Y. Ohnishi / KEK KEKB-LER for ILC Damping Ring Study Simulation of low emittance lattice includes machine errors and optics corrections. Y. Ohnishi / KEK.
Particle dynamics in electron FFAG Shinji Machida KEK FFAG04, October 13-16, 2004.
Y. Ohnishi / KEK KEKB LER for ILC Damping Ring Study Lattice simulation of lattice errors and optics corrections. November 1, 2007 Y. Ohnishi / KEK.
PS Booster Studies with High Intensity Beams Magdalena Kowalska supervised by Elena Benedetto Space Charge Collaboration Meeting May 2014.
Matching recipe and tracking for the final focus T. Asaka †, J. Resta López ‡ and F. Zimmermann † CERN, Geneve / SPring-8, Japan ‡ CERN, Geneve / University.
Details of space charge calculations for J-PARC rings.
October 4-5, Electron Lens Beam Physics Overview Yun Luo for RHIC e-lens team October 4-5, 2010 Electron Lens.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Scaling VFFAG eRHIC Design Progress Report 4 July 15, 2013Stephen Brooks, eRHIC FFAG meeting1.
1 FFAG Role as Muon Accelerators Shinji Machida ASTeC/STFC/RAL 15 November, /machida/doc/othertalks/machida_ pdf/machida/doc/othertalks/machida_ pdf.
Electron Model for a 3-10 GeV, NFFAG Proton Driver G H Rees, RAL.
Beam Loss Simulation in the Main Injector at Slip-Stacking Injection A.I. Drozhdin, B.C. Brown, D.E. Johnson, I. Kourbanis, K. Seiya June 30, 2006 A.Drozhdin.
F AAC Review, May 10, Prebys 1 Answer to Question  What is the analysis backing up the claim that the losses will be reduced with the new corrector.
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
Main Ring + Space charge effects WHAT and HOW … Alexander Molodozhentsev for AP_MR Group May 10, 2005.
Alexander Molodozhentsev KEK for MR-commissioning group September 20, 2005 for RCS-MR commissioning group September 27, 2005 Sextupole effect for MR -
Overview of Booster PIP II upgrades and plans C.Y. Tan for Proton Source group PIP II Collaboration Meeting 03 June 2014.
1 NICA Collider: status and further steps O.S. Kozlov LHEP, JINR, Dubna for the NICA team Machine Advisory Committee, JINR, Dubna, October 19-20, 2015.
E Levichev -- Dynamic Aperture of the SRFF Storage Ring Frontiers of Short Bunches in Storage Rings INFN-LNF, Frascati, 7-8 Nov 2005 DYNAMIC APERTURE OF.
Update on injection studies of LHC beams from Linac4 V. Forte (BE/ABP-HSC) Acknowledgements: J. Abelleira, C. Bracco, E. Benedetto, S. Hancock, M. Kowalska.
1 EMMA Tracking Studies Shinji Machida ASTeC/CCLRC/RAL 4 January, ffag/machida_ ppt & pdf.
ISIS Upgrade Modelling Dean Adams On behalf of STFC/ISIS C Warsop, B Jones, B Pine, R Williamson, H Smith, M Hughes, A McFarland, A Seville, I Gardner,
J-PARC Accelerator and Beam Simulations Sep. 7th, SAD2006 Masahito Tomizawa J-PARC Main Ring G., KEK Outline of J-PARC Accelerator Characteristics of High.
Simulation of resonances and beam loss for the J-PARC Main Ring Alexander Molodozhentsev (KEK) Etienne Forest (KEK) for the ICFA HB08 Workshop ICFA HB08.
J-PARC Spin Physics Workshop1 Polarized Proton Acceleration in J-PARC M. Bai Brookhaven National Laboratory.
PTC-ORBIT code for CERN machines (PSB, PS, SPS) Alexander Molodozhentsev (KEK) Etienne Forest (KEK) Group meeting, CERN June 1, 2011 current status …
ILC EXTRACTION LINE TRACKING Y. Nosochkov, E. Marin September 10, 2013.
UPDATE IN PTC-ORBIT PSB STUDIES Space charge meeting ( ) * Vincenzo Forte * Follows LIS meeting presentation 16/04/2012.
Off-momentum DA of RCS 3D_BM & QFF & CC AP meeting / December 8, 2004 Alexander Molodozhentsev Etienne Forest KEK.
SIMPSONS: Convergence of the Space Charge simulations for RCS Noda Hotchi.
Study of the space charge effects for J-PARC Main Ring Alexander Molodozhentsev (KEK) SAD Workshop, September 5-7, 2006.
D. Raparia2005/01/27-28 MAC Review EBIS Injector Linac Optics I I D.Raparia EBIS Review 2005/01/27-28 HEBT Booster Injection.
Resonance correction: -Q x +2Q y =6 for the AP-group Etienne Forest Alexander Molodozhentsev KEK January 12, 2005.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Pushing the space charge limit in the CERN LHC injectors H. Bartosik for the CERN space charge team with contributions from S. Gilardoni, A. Huschauer,
Warm linac simulations (DTL) and errors analysis M. Comunian F. Grespan.
The nonlinear dynamics of SIS100 at injection G. Franchetti Beam dynamics meet Magnets II 18/4/2012G.Franchetti1 Magnet multipoles: Dipole: Akishin et.
1 Error study of non-scaling FFAG 10 to 20 GeV muon ring Shinji Machida CCLRC/RAL/ASTeC 26 July, ffag/machida_ ppt.
Multipole components in the RCS-BM Hideaki Hotchi Dec. 8, Tokai.
Beam Loss Budget during Injection Process for MR Alexander Molodozhentsev KEK for RCS-MR group meeting
ICFA mini-Workshop on Beam Commissioning for High Intensity Accelerators Yasuhiro Watanabe (J-PARC / JAEA) Tracking between bending and quadrupole families.
J-Parc Neutrino Facility Primary Proton Beam Design A. K. Ichikawa(KEK), Y.Iwamoto(KEK) and K.Tanabe(Tokyo) et.al. 7 th Nov. 2003,
The Preparation for CSNS Accelerator Commissioning Sheng Wang June 8, 2015, Dongguan.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Recirculating Linac Acceleration  End-to-end.
A. Aksoy Beam Dynamics Studies for the CLIC Drive Beam Accelerator A. AKSOY CONTENS ● Basic Lattice Sketches ● Accelerating structure ● Short and long.
Electron Cooling Simulation For JLEIC
Beam-beam effects in eRHIC and MeRHIC
Status on Work for Splitter FS and Dilution System FS
Jeffrey Eldred, Sasha Valishev
Progress of SPPC lattice design
IMPACT Simulation of the Montague Resonance at PS
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Alternative Ion Injector Design
First Look at Error Sensitivity in MEIC
MEIC Alternative Design Part V
Status of IR / Nonlinear Dynamics Studies
Summary and Plan for Electron Polarization Study in the JLEIC
Error Sensitivity in MEIC
Presentation transcript:

RCS simulation 現状 と 今後 平成1 8 年 4 月14日 發知

Comparison with Machida’s result Machida’s result (6.72, 6.35) 181 INJ., 0.6 W/O CC W/ CC W/ Mult. of BM & QM W/O Mult. of BM & QM W/ CC Beam survival turns time (sec) Present result QxQx QyQy 1200 turns

Comparison of Beta functions Machida’s beta Present beta Beta function for 1/3 of (6.72, 6.35) B x (m) B y (m) s (m)

Comparison of painting area Machida Present Normalized phase space Matched beam, Emittance of linac beam:  Gaussian(2  ) with  =1.0  for  x n,  y n Mismatched beam, Emittance of linac beam:  Gaussian(4  ) with  =0.25  for  x n,  y n 324  216  Effective painting area: ~ 170  (x & y) mm mrad Effective painting area: ~ 170  (x), 100  (y) mm mrad x-x’ y-y’ x-x’ y-y’ ~170  ~100 

Improvement of painting Effective painting area: ~ 170  (x), 100  (y) mm mrad Effective painting area ~ 170  (x & y) mm mrad Twiss parameters of linac beam  x = m,  x =  y = m,  y =+0.4 Twiss parameters of linac beam  x = m,  x =  y = m,  y =  0.4 Improved x-x’ y-y’ x-x’ y-y’

Beam loss after “some improvements” (6.72, 6.35), 181 INJ., 0.6 Chromatic cor. : ON Beam survival turns W/ Mult W/O Mult xx Paint area Linac beam profile

RCS simulation - Mesh transverse : 50(r) x 64(  ) for R=0.17 m longitudinal : Injection energy and beam power 181 MeV inj., 0.6 and 0.3 Ext. - Number of macro particles Paint type Correlate - Linac beam profile  x :  (rms),  (99.5%)  y :  (rms),  (99.5%)  p/p : (rms), (99.5%)  0.25  for  x,y, for  p/p Gaussians (4  ) with - Twiss parameter of linac beam (mismatched beam)  x =-1.640,  x = m  y =-0.4,  y = m - Tracking condition -

Effective painting area ~ 170  (x & y) mm mrad Twiss parameters of linac beam  x = m,  x =  y = m,  y =  0.4 Painting Mismatched beam, Correlate paint

RCS simulation - Errors to be included in the simulations - (1) Multipole field components of BM & QM BM : MEASURED data & TOSCA QM : TOSCA (The measurement will be performed soon.) (2) Field errors of BM & QM BM : MEASURED data, Shuffling QM : No data → Random error [ Gauss(2  ) with  =5E-4 ] (The measured data will be available soon.) (3) Alignment errors of BM & QM Random error [ Gauss(2  ) with  =0.1 mm for dx & dy,  =0.2 mrad for d  (4)Leak fields from INJ & EXT DC SEPTA TOSCA (in progress) (6)B-Q, Q-Q tracking errors (5) Magnetic interference (7) Bump field errors included in simulations The measurements of (Q-S), (Q-STR) … are planned.

K0K0 K 1 (m -1 ) K 2 (m -2 ) K 3 (m -3 ) K 4 (m -4 ) K 5 (m -5 ) K 6 (m -6 ) BM 0.262E E E E E E E+5 QFL E E E+2- QDL E E E+2- QFM E E E+3- QFN E E E+3- QDN E E E+3- QDX E E E+3- QFX E E E+3- SDA E SDB E SFX E Multipole field components K n estimated at (6.68, 6.27) [ BM : Measurement & TOSCA QM : TOSCA ]

 mm mrad Q x -2Q y =-6 4Q x =27 Q x -4Q y =-18 2Q x -2Q y =0 3Q x +4Q y =45 Nonlinear resonances at RCS QxQx QxQx QyQy QyQy  p/p=0%  p/p=0.5% - Multipole field in the BM and QM applied : K 0 ~ K 6 - Chromatic correction : ON (SDA=  0.317, SDB=  0.276, SFX=0.417 m -2 ) - Synchrotron oscillation : ON assuming the stationary bucket - Physical aperture : set for all the BM, QM, SM - Start point of tracking : 1 st QDX - Initial condition of the beam particle:  x =  y, x=(  x /  x ) 1/2, x’=0, y=(  y /  y ) 1/2, y’=0, z=0,  p/p=0 and 0.5% - Number of turns : 5000 xx yy We looked for the maximum  x =  y for which the beam survives within the physical apertures up to 5000 turns.  x =  y

Field & Alignment errors of BM  BL)/(BL)  x (m)  y (m)  (rad) BM No. After shuffling

Field & Alignment errors of QM  GL)/(GL)  x (m)  y (m)  (rad) QM No.

COD &   caused by errors(1)~(3) COD dx (m) dy (m) s (m) |COD x |<~1.5 mm (before cor.) <~0.5 mm (after cor.) |COD y |<~4.5 mm (before cor.) <~0.8 mm (after cor.) Before correction After correction with STM  (6.72, 6.35) →(6.7217, )  / ~0.025% (x), 0.013% (y)

Preliminary results (6.72, 6.35) 0.6 Extr. Chromatic cor. : ACC Beam survival turns W/O Mult W/ Mult W/ Mult, ERROR, COD cor. W/ Mult, ERROR

Survey of operating point QxQx QyQy - Chromatic correction : NCC, DCC(181MeV), ACC - Beam power : 0.3MW or 0.6MW at Extr. - 3 rd resonance correction(x-2y=-6) : ON or OFF - Several errors (field, alignment errors…) ON or OFF - COD correction with STRs ON or OFF

Simulation system at JAEA ■ インテル Pentium D プロセッサ 920 (2x2MB L2 キャッシュ /2.80GHz/800MHz FSB) ■ デュアルチャネル DDR2-SDRAM 1024MB PC2-4200(512MBx2) ■250GB Serial-ATA ハードディスク ■ インテル 945G Express チップセット ………………………………………… ○ Mouse computer Lm-i 913 (×1 3台 + 10 台? ) CPU TIME (INJ~EXT : ~15000 turns) : ~ 2.5 months Short term simulation up to ~3000 turns(15 days) (survey of operating point) ○ Parallel computer at JAEA CPU TIME (INJ~EXT : ~15000 turns) : ~ 1 months Long term simulation (full simulation from INJ through EXT)