測地 VLBI 技術による 高精度周波数比較 VLBI MEASUREMENTS FOR FREQUENCY TRANSFER 日本測地学会第 112 回講演会 2009 年 11 月 6 日 ( 金 ) 産業技術総合研究所 Ⅴ. 測地測量・地球潮汐・測地 瀧口 博士 1 ,小山 泰弘 1 ,市川 隆一.

Slides:



Advertisements
Similar presentations
D. S. MacMillan 16-April-2008 Modeling Phase and Cable Cal for ONSALA60 Dan MacMillan NVI/NASA/GSFC Per Bjerkeli Chalmers University, Sweden Modeling Phase.
Advertisements

三方晶テルル・セレンにおけるDirac分散とスピン軌道効果
2013 Western Australia Surveying Conference
04/22/02EGS G STABILITY OF GLOBAL GEODETIC RESULTS Prof. Thomas Herring Room ;
Moscow Aviation Institute (State University of Aerospace Technologies) Ambiguity Resolution of Phase Measurements in Precise Point Positioning working.
A quick GPS Primer (assumed knowledge on the course!) Observables Error sources Analysis approaches Ambiguities If only it were this easy…
[1] ICHIKAWA Ryuichi, [2] ISHII Atsutoshi, [3] TAKIGUCHI Hiroshi, KIMURA Moritaka, [1] SEKIDO Mamoru, [1] TAKEFUJI Kazuhiro, [1] UJIHARA Hideki, [1] HOBIGER.
Time Transfert by Laser Link T2L2 On Jason 2 OCA –UMR Gemini Grasse – FRANCE E. Samain – Principal.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Footprint Observations at the Fundamental Station Wettzell Wolfgang Schlüter Thomas Klügel Christian Schade Bundesamt für Kartographie und Geodäsie Fundamentalstation.
Space Weather influence on satellite based navigation and precise positioning R. Warnant, S. Lejeune, M. Bavier Royal Observatory of Belgium Avenue Circulaire,
Wettzell WVR Workshop1 October 9-10, 2006 Use of NWM forecasts for converting T B to delay Arthur Niell MIT Haystack Observatory Mark Leidner AER, Inc.
Measurements Calibration EGU06-A-05466/G7-1TH5P-0488 Atmospheric parameter comparisons at the Tsukuba and Kashima VLBI stations during the CONT05 VLBI.
Real-Time Orbit And Clock Estimation Using PANDA Software Shi C, Lou YD, Zhao QL, Liu JN GNSS Research Center, Wuhan University, China IGS Analysis Center.
Ground-Based Altimetry Using a Single- Receiver Single-Frequency GNSS Phase Ambiguity Resolution Technique G. Stienne* S. Reboul J.-B. Choquel M. Benjelloun.
15 Sep 2006 IVS VLBI2010 Haystack0 It’s About Time !!!!!
Electronic Transmission of Very- Long Baseline Interferometry Data National Internet2 day, March 18, 2004 David LapsleyAlan Whitney MIT Haystack Observatory,
Deflection of light induced by the Sun gravity field and measured with geodetic VLBI Oleg Titov (Geoscience Australia) Anastasiia Girdiuk (Institute of.
Part VI Precise Point Positioning Supported by Local Ionospheric Modeling GS894G.
SRI Seminar 2005 Time series of GPS stations For reference, monitoring and geophysics Günter Stangl Federal Office of Metrology and Surveying.
NGS GPS ORBIT DETERMINATION Positioning America for the Future NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service National Geodetic.
VLBI2010 Reference antenna for antenna deformations and site ties East Coast Geodetic VLBI Meeting Feb, 2011, Haystack Observatory Bill Petrachenko.
Space Geodesy (1/3) Geodesy provides a foundation for all Earth observations Space geodesy is the use of precise measurements between space objects (e.g.,
Titelmaster Geometrical and Kinematical Precise Orbit Determination of GOCE Akbar Shabanloui Institute of Geodesy and Geoinformation, University of Bonn.
Tropospheric parameters from DORIS in comparison to other techniques during CONT campaigns Johannes Böhm (1), Kamil Teke (1, 2), Pascal Willis (3, 4),
How Does GPS Work ?. Objectives To Describe: The 3 components of the Global Positioning System How position is obtaining from a radio timing signal Obtaining.
Compatibility of Receiver Types for GLONASS Widelane Ambiguity Resolution Simon Banville, Paul Collins and François Lahaye Geodetic Survey Division, Natural.
IRI Workshop 2005 TEC Measurements with Dual-Frequency Space Techniques and Comparisons with IRI T. Hobiger, H. Schuh Advanced Geodesy, Institute of Geodesy.
1 AOGS 2012, Singapore, Aug 13-17, 2012 Surveying co-located GNSS/VLBI/SLR Stations In China Xiuqiang Gong, Yunzhong Shen, Junping Chen, Bin Wu Shanghai.
E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications.
SPACE GEODESY NETWORK & ITRF Z Minchul LEE 1.
The ICRF, ITRF and VLBA Chopo Ma NASA’s Goddard Spaceflight Center.
IGS Analysis Center Workshop, 4 June 2008 Recommendations from “RT/NRT user requirements” 1.E-GVAP recommends IGS to support PPP strategy with high quality.
Calibration of geodetic (dual frequency) GPS receivers Implications for TAI and for the IGS G. Petit.
Evaluating Aircraft Positioning Methods for Airborne Gravimetry: Results from GRAV-D’s “Kinematic GPS Processing Challenge” Theresa M. Damiani, Andria.
SP Swedish National Testing and Research Institute Real-Time GPS Processing with Carrier Phase FILTER PARAMETER INFLUENCE ON GPS CARRIER PHASE REAL-TIME.
G51C-0694 Development of the Estimation Service of the Earth‘s Surface Fluid Load Effects for Space Geodetic Techniques for Space Geodetic Techniques Hiroshi.
PPP Workshop: Reaching Full Potential
Unified Analysis Workshop, December 5-7, 2007, Beach Resort Monterey, CA GG S Proposals for Extended Parameterization in SINEX Markus Rothacher GeoForschungsZentrum.
January 14, 2003GPS Meteorology Workshop1 Information from a Numerical Weather Model for Improving Atmosphere Delay Estimation in Geodesy Arthur Niell.
2005 October 17East Coast Geodetic VLBI Meeting1 Instrumental effects in geodetic VLBI Brian Corey (with copious cribbing from Alan Rogers’s 1991 Chapman.
Evaluation of Global Ionosphere TEC by comparison with VLBI data Mamoru Sekido, Tetsuro Kondo Eiji Kawai, and Michito Imae.
1 SVY 207: Lecture 12 Modes of GPS Positioning Aim of this lecture: –To review and compare methods of static positioning, and introduce methods for kinematic.
VLBI Oct Development Status of Broadband VLBI System (Gala-V) -(II) M.Sekido (1), K.Takefuji (1), H.Ujihara (1), M.Tsutsumi.
Scattering and Scintillation in Radio Astronomy 1 The dual-frequency calibration of ionosphere influence in VLBA data processing Andrey Chuprikov.
Canada’s Natural Resources – Now and for the Future Broadband Delay Tutorial Bill Petrachenko, NRCan, FRFF workshop, Wettzell, Germany, March 18, 2009.
20 th Meeting of the European VLBI Group for Geodesy and Astrometry (EVGA), Bonn, Germany Wednesday, 28 th March 2011 EVGA – Looking back at the early.
SHA: the GNSS Analysis Center at SHAO Junping Chen, Bin Wu, Xiaogong Hu Haojun Li, Xiao Pei, Yize Zhang Shanghai Astronomical Observatory (SHAO)
03/000 Effect of the reference radiosource instability on the TRF solution Australian Government Geoscience Australia 4 th General IVS Meeting, 9-13, January,
Water vapour estimates over Antarctica from 12 years of globally reprocessed GPS solutions Ian Thomas, Matt King, Peter Clarke Newcastle University, UK.
2009/02/18 IVS TDC Symposium クワッドリッジホーンアンテナ ( 広帯域フィー ド ) を 用いた電波望遠鏡の測地 VLBI における性能評 価 Evaluation of a Radio Telescope Using a Quad- ridge Horn Antenna.
Do we need WVRs for geodetic VLBI? Joerg Wresnik (1), Johannes Boehm (1), Harald Schuh (1), Arthur Niell (2) Workshop on Measurement of Atmospheric Water.
IGARSS 2011, Vancuver, Canada July 28, of 14 Chalmers University of Technology Monitoring Long Term Variability in the Atmospheric Water Vapor Content.
NAPEOS: The ESA/ESOC Tool for Space Geodesy
GALOCAD GAlileo LOcal Component for nowcasting and forecasting Atmospheric Disturbances R. Warnant, G. Wautelet, S. Lejeune, H. Brenot, J. Spits, S. Stankov.
Relative positioning with Galileo E5 AltBOC code measurements DEPREZ Cécile Dissertation submitted to the University of Liège in partial requirements for.
教養的教育パッケージ別科目 「産業と技術」 制度と生活世界 自然の視角 LSI と産業 広島大学 ナノデバイス・システム研究センター 平成 14 年度前期 横山 新 後期 吉川公麿 HIROSHIMA UNIVERSITY 平成 14 年 5 月 28 日.
Astronomisches Institut der Universität Bern Global Navigation Satellite Systems for Positioning and Time Transfer T. Schildknecht, A. Jäggi R. Dach, G.
How Does GPS Work ?. The Global Positioning System 24+ satellites 20,200 km altitude 55 degrees inclination 12 hour orbital period 5 ground control stations.
Report from TCTF WG on TWSTFT Coordinator: Miho Fujieda, NICT Sub Coordinator: Yi-Jiun Huang, TL Sub Coordinator: Hideo Maeno, NICT APMP TCTF meeting Nov.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Thomas Herring, IERS ACC, MIT
Assessing the Compatibility of Microwave Geodetic Systems
Multi-technique comparison of troposphere zenith delays and gradients during CONT08 Kamil Teke (1,2), Johannes Böhm(1), Tobias Nilsson(1), Harald Schuh(1),
Troposphere and Clock Parameterization During Continuous VLBI Campaigns Kamil Teke1, 2, Johannes Boehm1, Hana Spicakova1, Andrea Pany1, Harald Schuh1 1.
VLBI Estimates of Vertical Crustal Motion in Europe
Technical Considerations on VLBI Astrometry with FAST Zhihan Qian(钱志瀚) and Bo Zhang(张波) Shanghai Astronomical Observatory, CAS Outline Existing VLBI.
測地VLBI技術による 高精度周波数比較 VLBI MEASUREMENTS FOR FREQUENCY TRANSFER
Suggested Guidance for OPUS Projects Processing
Presentation transcript:

測地 VLBI 技術による 高精度周波数比較 VLBI MEASUREMENTS FOR FREQUENCY TRANSFER 日本測地学会第 112 回講演会 2009 年 11 月 6 日 ( 金 ) 産業技術総合研究所 Ⅴ. 測地測量・地球潮汐・測地 瀧口 博士 1 ,小山 泰弘 1 ,市川 隆一 1 ,後藤 忠広 1 , 石井 敦利 1,2,3 , Thomas Hobiger 1 ,細川 瑞彦 1 1 情報通信研究機構, 2 国土地理院, 3 (株)エイ・イー・エス 瀧口 博士 1 ,小山 泰弘 1 ,市川 隆一 1 ,後藤 忠広 1 , 石井 敦利 1,2,3 , Thomas Hobiger 1 ,細川 瑞彦 1 1 情報通信研究機構, 2 国土地理院, 3 (株)エイ・イー・エス

Content Introduction » Previous study  Intercomparison : VLBI (IVS) vs. GPS (IGS) ­ Wettzell - Onsala  How stable are current VLBI systems? ­ Kashima34m – Kashima11m ­ Kashima11m – Koganei11m Intercomparison between VLBI and other techniques » Can the VLBI measure the right time difference?  Kashima34m - Kashima11m ­ Artificial change by Line Stretcher & Trombone Conclusions Introduction » Previous study  Intercomparison : VLBI (IVS) vs. GPS (IGS) ­ Wettzell - Onsala  How stable are current VLBI systems? ­ Kashima34m – Kashima11m ­ Kashima11m – Koganei11m Intercomparison between VLBI and other techniques » Can the VLBI measure the right time difference?  Kashima34m - Kashima11m ­ Artificial change by Line Stretcher & Trombone Conclusions

Introduction Background Development of frequency standard  Atomic fountains  Optical clocks Development of frequency standard  Atomic fountains  Optical clocks Time and frequency transfer technique » GPS Carrier Phase » TWSTFT » long averaging period » insufficient accuracy Time and frequency transfer technique » GPS Carrier Phase » TWSTFT » long averaging period » insufficient accuracy  improvements of highly precise time and frequency transfer techniques are strongly desired NICT-CsF1 ….. developing 2×10 few days NICT optical clocks ….. developing few hours 2×10 2-4×10 VLBI

Very Long Baseline Interferometry measure the arrival time delays between multiple station Geodetic VLBI experiment by IVS The averaging formal error of the clock offset : 20 ps ← better than other current techniques

VLBI + GPS long period ( days, days) GPS VLBI GPS Atomic Fountain Optical Clocks 10 3 s Intercomparison : VLBI vs. GPS 1.Wettzell-Onsala  VLBI vs. GPS CP  IVS and IGS data 1.Wettzell-Onsala  VLBI vs. GPS CP  IVS and IGS data IGS: IVS: □ ● Onsala Sweden Onsala Space Observatory Wettzell at each site VLBI and GPS are sharing the H-maser VLBI is more stable than GPS surpassing the stability of atomic fountain at 10 3 s VLBI stability : follows a 1/τ law very closely 2× ( 20ps Previous study Germany Fundamental Station Wettzell The geodetic VLBI technique has the potential for precise frequency transfer

Kashima34m-Kashima11m after removing linear trend Kashima11m – Koganei11m in summer in winter How stable are current VLBI systems? Previous study How stable are current VLBI systems? → surpassing the stability of atomic fountain at 2x10 4, 10 5 s ⇒ unstable than international baseline (Wettzell-Onsala) ⇒ influence of temperature change Measures to reduce the influence of the temperature change are necessary.

The geodetic VLBI technique has the potential for precise frequency transfer » VLBI is more stable than GPS » surpassing the stability of atomic fountain at 10 3 s ( Wettzell-Onsala ) » 2x10 4, 10 5 s ( Kashima11-Koganei, Kashima34-Kashima11 ) The geodetic VLBI technique has the potential for precise frequency transfer » VLBI is more stable than GPS » surpassing the stability of atomic fountain at 10 3 s ( Wettzell-Onsala ) » 2x10 4, 10 5 s ( Kashima11-Koganei, Kashima34-Kashima11 ) Improve the station environment » for Geodesy → for T&F transfer Intercomparison » MARBLE » International » other techniques : GPS, DMTD, TWSTFT, TEC(ETS-8) Calibrate instrumental delay What ’ s Next ?

Intercomparison : VLBI vs. other techniques Koganei /Tokyo Kashima Koganei VLBI Koganei11m GPS: kgni NICT sites VLBI GPS TWSTFT TEC (ETS-8) Kashima34m – Kashima11m Kashima11m – Koganei11m Kashima34m – Kashima11m Kashima11m – Koganei11m VLBI MARBLE GPS Kashima 239m 109km Kashima Space Research Center Headquarters ★ ★ VLBI Kashima11m VLBI Kashima34m GPS : ksmv GPS : ks34 H-maser, DMTD

Can the VLBI measure the right time difference? Trombone Kashima34m – Kashima11m » Artificial time difference change  using Line Stretcher & Trombone » Intercomparison between VLBI, GPS and DMTD Kashima34m – Kashima11m » Artificial time difference change  using Line Stretcher & Trombone » Intercomparison between VLBI, GPS and DMTD DMTD 6x10 (6ps)

Normal Geodetic VLBI » Observation  multiple sources  antenna slew time  different scan time  24 hours » Data Analysis  estimate clock parameter atmosperic delay station coordinates Normal Geodetic VLBI » Observation  multiple sources  antenna slew time  different scan time  24 hours » Data Analysis  estimate clock parameter atmosperic delay station coordinates This study » Observation  one source : 3C84  no antenna slew time  same scan time  a few hours » Data Analysis  estimate only clock parameter  atmospheric delay : short baseline, one source  station coordinates : fixed to a-priori coordinates This study » Observation  one source : 3C84  no antenna slew time  same scan time  a few hours » Data Analysis  estimate only clock parameter  atmospheric delay : short baseline, one source  station coordinates : fixed to a-priori coordinates Differences with the normal observation

Data analysis VLBI » CALC/SOLVE » single baseline » S/X ionosphere-free linear combination  clock offset / 30sec » Time Defference clock offset / 30sec VLBI » CALC/SOLVE » single baseline » S/X ionosphere-free linear combination  clock offset / 30sec » Time Defference clock offset / 30sec GPS » NR Canada’s PPP  IGS Final Orbit & Clock(30s) » Precise Point Positioning  satellite clock interpolation  clock offset / 30sec » Time Defference clock offset A – clock offset B / 30sec GPS » NR Canada’s PPP  IGS Final Orbit & Clock(30s) » Precise Point Positioning  satellite clock interpolation  clock offset / 30sec » Time Defference clock offset A – clock offset B / 30sec vs. DMTD Time Difference / 1sec

DMTD Time Difference DMTD メモリ 0 ⇒ Max DMTD ps 211 ps

GPS vs. DMTD after removing offsets Time Difference DMTDGPS GPS-DMTD DMTD GPS GPS-DMTD ps 62 ps 37 ps

VLBI vs. GPS and DMTD Time Difference DMTDGPSVLBI GPS-DMTDVLBI-DMTD DMTD after removing offsets VLBI VLBI-DMTD ps 42 ps 23 ps

VLBI vs. GPS and DMTD Time Difference DMTDGPSVLBI GPS-DMTDVLBI-DMTD DMTD GPS VLBI

Conclusions Can the VLBI measure right time difference? » VLBI vs. GPS CP and DMTD » Artificial change  VLBI vs. DMTD: ↑good agreement  GPS vs. DMTD: » The geodetic VLBI technique can measure the right time difference. Can the VLBI measure right time difference? » VLBI vs. GPS CP and DMTD » Artificial change  VLBI vs. DMTD: ↑good agreement  GPS vs. DMTD: » The geodetic VLBI technique can measure the right time difference.

Acknowledgements IVS and IGS for the high quality products GSFC, JPL, NRC Canada for VLBI and GPS analysis software IVS and IGS for the high quality products GSFC, JPL, NRC Canada for VLBI and GPS analysis software Thank you very much for your attention.