(Combinational Logic Circuit)

Slides:



Advertisements
Similar presentations
Encoders Three-state devices Multiplexers
Advertisements

Multiplexer. A multiplexer (MUX) is a device which selects one of many inputs to a single output. The selection is done by using an input address. Hence,
Decoders/DeMUXs CS370 – Spring Decoder: single data input, n control inputs, 2 outputs control inputs (called select S) represent Binary index of.
Boolean Algebra and Logic Gates 1 Computer Engineering (Logic Circuits) Lec. # 4 Dr. Tamer Samy Gaafar Dept. of Computer & Systems Engineering Faculty.
Overview Part 2 – Combinational Logic
1 CS 140 Lecture 12 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 11 Professor CK Cheng 5/09/02. Part III - Standard Modules Decoder, Encoder, Mux, DeMux, Shifter, Adder, Multiplexer Interconnect: Decoder,
Decoder.
CS 140 Lecture 13 Combinational Standard Modules Professor CK Cheng CSE Dept. UC San Diego 1.
Combinational Logic Building Blocks
Combinational Logic1 DIGITAL LOGIC DESIGN by Dr. Fenghui Yao Tennessee State University Department of Computer Science Nashville, TN.
Computer Engineering (Logic Circuits) (Karnaugh Map)
Multiplexer MUX. 2 Multiplexer Multiplexer (Selector)  2 n data inputs,  n control inputs,  1 output  Used to connect 2 n points to a single point.
Combinational Circuits
Combinational Circuits
Shannon’s Expansion Muxes and Encoders. Tri-State Buffers  A tri-state buffer has one input x, one output f and one control line e Z means high impedance,
1 CSE 140 Lecture 12 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego.
Combinational Logic Chapter 4.
Outline Decoder Encoder Mux. Decoder Accepts a value and decodes it Output corresponds to value of n inputs Consists of: Inputs (n) Outputs (2 n, numbered.
(Sequential Logic Circuit)
Chapter 3 Decoder and Encoder Digital Logic Design III
Boolean Algebra and Logic Gates 1 Computer Engineering (Logic Circuits) Lec. # 3 Dr. Tamer Samy Gaafar Dept. of Computer & Systems Engineering Faculty.
Combinational Circuits
Combinational Logic. Outline 4.1 Introduction 4.2 Combinational Circuits 4.3 Analysis Procedure 4.4 Design Procedure 4.5 Binary Adder- Subtractor 4.6.
MSI Devices M. Mano & C. Kime: Logic and Computer Design Fundamentals (Chapter 5) Dr. Costas Kyriacou and Dr. Konstantinos Tatas ACOE161 - Digital Logic.
CS2100 Computer Organisation MSI Components (AY2015/6 Semester 1)
Three-state devices Multiplexers
Boolean Algebra and Logic Gates 1 Computer Engineering (Logic Circuits) Lec. # 8 (Combinational Logic Circuit) Dr. Tamer Samy Gaafar Dept. of Computer.
Combinational Design, Part 3: Functional Blocks
Logical Circuit Design Week 6,7: Logic Design of Combinational Circuits Mentor Hamiti, MSc Office ,
Kuliah Rangkaian Digital Kuliah 6: Blok Pembangun Logika Kombinasional Teknik Komputer Universitas Gunadarma.
CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES
Morgan Kaufmann Publishers
Computer Engineering (Logic Circuits) (Karnaugh Map)
Boolean Algebra and Logic Gates 1 Computer Engineering (Logic Circuits) Lec. # 10 (Sequential Logic Circuit) Dr. Tamer Samy Gaafar Dept. of Computer &
CSE 140 Lecture 12 Combinational Standard Modules CK Cheng CSE Dept. UC San Diego 1.
Decoders, Encoders, Multiplexers
Chapter 6 Know commonly used combinational subcircuits –Multiplexers –Decoders –Encoders Know VHDL constructs used to define combinational circuits.
Chap 2. Combinational Logic Circuits
CO UNIT-I. 2 Multiplexers: A multiplexer selects information from an input line and directs the information to an output line A typical multiplexer has.
ECE 3110: Introduction to Digital Systems Chapter 5 Combinational Logic Design Practices Three-state devices Multiplexers.
Combinational Circuits by Dr. Amin Danial Asham. References  Digital Design 5 th Edition, Morris Mano.
Chapter Four Combinational Logic 1. Discrete quantities of information are represented in digital systems by binary codes. A binary code of n bits is.
1 Chapter 4 Combinational Logic Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables,
Chapter Four Combinational Logic 1. C OMBINATIONAL C IRCUITS It consists of input variables, logic gates and output variables. Output is function of input.
Combinational Circuit Design. Digital Circuits Combinational CircuitsSequential Circuits Output is determined by current values of inputs only. Output.
SYEN 3330 Digital SystemsJung H. Kim Chapter SYEN 3330 Digital Systems Chapter 4 -Part 1.
Company LOGO Edit your slogan here DKT 122/3 DIGITAL SYSTEM 1 WEEK #8 FUNCTIONS OF COMBINATIONAL LOGIC (ENCODER & DECODER, MUX & DEMUX)
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Multiplexers.
Digital Design Lecture 8 Combinatorial Logic (Continued)
Combinational Circuits. Outline Boolean Algebra Decoder Encoder MUX.
Multiplexers & Decoders By: Jason Pitts CS 147 Spring 2010.
CSE 140 Lecture 13 Combinational Standard Modules Professor CK Cheng CSE Dept. UC San Diego 1.
CSE 140 Lecture 12 Combinational Standard Modules CK Cheng CSE Dept. UC San Diego 1.
Decoder. 2 ABC 3:8 dec O0O0 O1O1 O2O2 A B C Enb S2S2 S1S1 S0S0 O3O3 O4O4 O5O5 O6O6 O7O7 EABC O0O0 O1O1 O2O2 O3O3 O4O4 O5O5 O6O6 O7O7 0XXX
Lecture No. 18 Combinational Functional Devices. Recap Decoder Decoder –3-to-8 Decoder –Cascading of Decoders 4-to-16 decoder –Implementing SOP & POS.
MSI Circuits.
Presented by A. Maleki Fall Semester, 2010
Chapter 12. Chapter Summary Boolean Functions Representing Boolean Functions Logic Gates Minimization of Circuits (not currently included in overheads)
Combinational Circuits
Combinational Circuits
Part 4 Combinational Logic.
Combinational Logic Circuits
CS M51A/EE M16 Winter’05 Section 1 Logic Design of Digital Systems Lecture 15 March 9 W’05 Yutao He 4532B Boelter Hall
FIGURE 4.1 Block diagram of combinational circuit
Digital System Design Combinational Logic
Adder, Subtructer, Encoder, Decoder, Multiplexer, Demultiplexer
ECE2030 HW-6.
Presentation transcript:

(Combinational Logic Circuit) Computer Engineering (Logic Circuits) Lec. # 9 (Combinational Logic Circuit) Dr. Tamer Samy Gaafar Dept. of Computer & Systems Engineering Faculty of Engineering Zagazig University

Course Web Page http://www.tsgaafar.faculty.zu.edu.eg Email: tsgaafar@yahoo.com

Combinational Logic Circuits (Contd.) Lec. # 9 Ch. 4 Combinational Logic Circuits (Contd.)

Only one switch should be activated at a time Encoders Put “Information” into code Binary Encoder Example: 4-to-2 Binary Encoder Only one switch should be activated at a time X0 Binary Encoder 1 x3 x2 x1 x0 y1 y0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 x1 x2 x3 y1 y0 2 3

Encoders Octal-to-Binary Encoder (8-to-3) Binary Encoder Y2 Y1 Y0 I7 I4 I3 I2 I1 I0 I7 I6 I5 I4 I3 I2 I1 I0 Y2 Y1 Y0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1

Priority Encoders 4-Input Priority Encoder Priority Encoder V0 Y1 Y0 I3 I2 I1 I0 Y1 Y0 V 0 0 0 0 0 0 0 0 0 1 1 0 0 1 x 0 1 0 1 x x 1 0 1 x x x 1 1 Y1 I1 1 I2 I3 I0

Encoder / Decoder Pairs Binary Encoder Binary Decoder I7 I6 I5 I4 I3 I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 7 7 6 6 5 5 Y2 Y1 Y0 I2 I1 I0 4 4 3 3 2 2 1 1

Multiplexers S1 S0 Y 0 0 I0 0 1 I1 1 0 I2 1 1 I3 MUX Y I0 I1 I2 I3 0 0 I0 0 1 I1 1 0 I2 1 1 I3 MUX Y I0 I1 I2 I3 S1 S0

Multiplexers 2-to-1 MUX 4-to-1 MUX I0 MUX I1 Y S I0 I1 MUX I2 I3 Y S1 S0

Multiplexers Quad 2-to-1 MUX x3 y3 x2 y2 x1 y1 x0 y0 I0 MUX I1 Y S Y3 AA S E Y3 Y2 Y1 Y0 B3 B2 B1 B0 S

Multiplexers Quad 2-to-1 MUX A3 A2 A1 A0 MUX Y3 Y2 Y1 Y0 B3 B2 B1 B0 S E Y3 Y2 Y1 Y0 B3 B2 B1 B0 Extra Buffers

Implementation Using Multiplexers Example F(x, y) = ∑(0, 1, 3) x y F 0 0 1 0 1 1 0 1 1 MUX Y I0 I1 I2 I3 S1 S0 1 F x y

Implementation Using Multiplexers Example F(x, y, z) = ∑(1, 2, 6, 7) MUX Y I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 1 x y z F 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 F x y z

Implementation Using Multiplexers Example F(x, y, z) = ∑(1, 2, 6, 7) x y z F 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 MUX Y I0 I1 I2 I3 S1 S0 z F = z F z F = z 1 F = 0 x y F = 1

Implementation Using Multiplexers Example F(A, B, C, D) = ∑(1, 3, 4, 11, 12, 13, 14, 15) A B C D F 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 MUX Y I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 D F = D D F = D D F = D F F = 0 D F = 0 1 F = D 1 F = 1 F = 1 A B C

Multiplexer Expansion 8-to-1 MUX using Dual 4-to-1 MUX MUX Y I0 I1 I2 I3 S1 S0 Y I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 MUX Y I0 I1 S MUX Y I0 I1 I2 I3 S1 S0 1 0 0

DeMultiplexers DeMUX I Y3 Y2 Y1 Y0 S1 S0 S1 S0 Y3 Y2 Y1 Y0 0 0 I 0 1 0 0 I 0 1 1 0 1 1

Multiplexer / DeMultiplexer Pairs MUX DeMUX Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 7 I7 I6 I5 I4 I3 I2 I1 I0 7 6 6 5 5 4 4 Y I 3 3 2 2 1 1 S2 S1 S0 S2 S1 S0 Synchronize x2 x1 x0 y2 y1 y0

DeMultiplexers / Decoders DeMUX I Y3 Y2 Y1 Y0 S1 S0 Binary Decoder I1 I0 E Y3 Y2 Y1 Y0 E I1 I0 Y3 Y2 Y1 Y0 x x 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 S1 S0 Y3 Y2 Y1 Y0 0 0 I 0 1 1 0 1 1

Seven-Segment Decoder a b c g e d f w x y z a b c d e f g 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 x x x x x x x 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 ? w x y z a b c d e f g BCD code y 1 x w z b = . . . a = w + y + xz + x’z’ c = . . . d = . . .

Three-State Gates Tri-State Buffer Tri-State Inverter C A Y 0 x Hi-Z 1 0 1 1 1 A Y C A Y C

Three-State Gates C D Y 0 0 Hi-Z 0 1 B 1 0 A 1 1 ? A Y C B Not Allowed 0 0 Hi-Z 0 1 B 1 0 A 1 1 ? A Y C B Not Allowed D A C B A if C = 1 B if C = 0 Y=

Three-State Gates Binary Decoder I3 I2 Y I1 I0 Y3 Y2 S1 I1 I0 Y1 E Y0

Binary Multipliers

Binary Multiplier

Binary Multiplier

Binary Multiplier

4 bit by 3 bit Binary Multiplier

4 bit by 3 bit Binary Multiplier