An IFU for IFOSC on IUCAA 2m Telescope

Slides:



Advertisements
Similar presentations
HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
Advertisements

GLAO instrument specifications and sensitivities
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
NIR INSTRUMENT FOR GLAO Takashi Hattori, Iwata Ikuru (Subaru Telescope)
990901EIS_Opt.1 The Instrument: Optical Design Dr. John T. Mariska Data Coordination Scientist Naval Research Laboratory
Optical Astronomy Imaging Chain: Telescopes & CCDs.
IRSIS : Preliminary Fiber bundle design Original datas : Fiber focal plane of F/5,5 telescope primary focal plane - TBC Telescope FOV : 15’x15’
Spectroscopic Reference Design Options D. L. DePoy Texas A&M University.
Announcements No lab tonight due to Dark Sky Observing Night last night Homework: Chapter 6 # 1, 2, 3, 4, 5 & 6 First Quarter Observing Night next Wednesday.
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
The Research School of Astronomy and Astrophysics of the Australian National University at Mt Stromlo Observatory is developing a wide-field Cassegrain.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
NGAO NGS WFS design review Caltech Optical Observatories 31 st March 2010.
NGAO NGS WFS design review Caltech Optical Observatories 1 st April NGAO WFS design, Caltech Optical Observatories.
Spectrographs. Spectral Resolution d 1 2 Consider two monochromatic beams They will just be resolved when they have a wavelength separation of d Resolving.
Astronomical Spectroscopy
Ch 25 1 Chapter 25 Optical Instruments © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson Education, Inc., Upper Saddle.
KMOS Instrument Science Team Review Instrument overview.
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Grazing-incidence design and others L. Poletto Istituto Nazionale per la Fisica della Materia (INFM) Department of Electronics and Informatics - Padova.
Optical characteristics of the EUV spectrometer (EUS) for SOLO L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia (INFM) Department.
Astronomical Instrumentation Often, astronomers use additional optics between the telescope optics and their detectors. This is called the instrumentation.
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
Engineering: NAHUAL Ireland Acquisition Camera, Focal Plane Mechanisms and Layout Tully Peacocke, National University of Ireland Maynooth Carlos del Burgo,
Spectrographs. Literature: Astronomical Optics, Daniel Schneider Astronomical Observations, Gordon Walker Stellar Photospheres, David Gray.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer for JWST Martyn Wells MIRI EC & UKATC.
3D meeting Tenerife July 2002 Ian Parry, Andrew Dean, Dave King, Andy Bunker, Steve Medlen, Jim Pritchard, Rachel Johnson, Anamparabu Ramaprakash, Rob.
Chang,Liang YNAO,CAS July 09-10,2011 Fore Parts of Optical Design Scheme of FASOT (from telescope to spectrograph)
14 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
Near Infrared Spectro-polarimeter (NIRSP) Conceptual Design Don Mickey Jeff Kuhn Haosheng Lin.
15 October Observational Astronomy Direct imaging Photometry Kitchin pp ,
18 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
The Second International Workshop on Ultra-high-energy cosmic rays and their sources INR, Moscow, April 14-16, 2005 from Extreme Universe Space Observatory.
Astronomical Spectroscopy Notes from Richard Gray, Appalachian State, and D. J. Schroeder 1974 in “Methods of Experimental Physics, Vol. 12-Part A Optical.
Integral Field Spectroscopy. David Lee, Anglo-Australian Observatory.
JGR 19 Apr Basics of Spectroscopy Gordon Robertson (University of Sydney)
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
ZTF Optics Design P. Jelinsky ZTF Technical Meeting 1.
ASTR 3010 Lecture 18 Textbook N/A
The Study of IFU for the Li Jiang 2.4m Telescope ZHANG Jujia 张居甲 Yun Nan Astronomical Observatory. CAS Sino-French IFU Workshop Nov Li Jiang.
WFIRST IFU -- Preliminary “existence proof” Qian Gong & Dave Content GSFC optics branch, Code 551.
イメージスライサー型可視光 面分光ユニットの開発 Development of an integral field unit (IFU) with an image slicer Shinobu Ozaki, Satoshi Miyazaki, Takuya Yamashita, Takashi Hattori,
To a brief summary E. Verroi and G. Naletto. The main problem is the instability of count rates in the 4 channels  Bad possibility of pointing the star.
Grisms Michael Sholl Space Sciences Laboratory 29 March 2003 Practical implementation for SNAP.
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Preliminary Foreoptics Design for FASOT of 2nd Generation L. Chang, X.M Cheng
ZTF Optics Design ZTF Technical Meeting 1.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
Astronomical Observational Techniques and Instrumentation
Visible Spectro-polarimeter (ViSP) Conceptual Design David Elmore HAO/NCAR
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
Performance and sensitivity of Low Resolution Spectrographs for LAMOST Zhu Yongtian, Hou Yonghui, Hu Zhongwen Wang Lei, Wang Jianing.
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
Astronomical Spectroscopic Techniques. Contents 1.Optics (1): Stops, Pupils, Field Optics and Cameras 2.Basic Electromagnetics –Math –Maxwell's equations.
1 Exercise ID Telescopes Begin: Begin: Look at Cameras brought in by students Talk about telescope basics and set up Celestron telescope In-class Objectives:
Integral Field Spectrograph Eric Prieto LAM. How to do 3D spectroscopy.
Single Object Spectroscopy and Time Series Observations with NIRSpec
CASE spectrograph Spectrograph Optical Specifications
Astronomical Spectroscopic Techniques
SOFIA — The Observatory
Spectrophotometric calibration of the IFU spectrograph
An IFU slicer spectrometer for SNAP
Introduction to Spectroscopy
Observational techniques meeting #6
Observational Astronomy
Optics Alan Title, HMI-LMSAL Lead,
Presentation transcript:

An IFU for IFOSC on IUCAA 2m Telescope A. N. Ramaprakash Inter-University Centre for Astronomy & Astrophysics, Pune Abhay, Atul, Hillol, Kalpesh, Mahesh, Moin, Mudit, Pravin, Ranjan, Shyam, Sujith, Swapnil, Vilas

IFU on IUCAA 2 m Telescope Plan of the Talk Telescope and IFOSC parameters Basic structure of the system Constraints on IFU Design for IFOSC on IUCAA Telescope IFU on IUCAA 2 m Telescope Design and Performance of the IFU Basic Design Selection criteria for parameters Performance IFOSC performance with IFU / Summary 4.12.2007 A. N. Ramaprakash, IUCAA

Techniques for 2-D Spectroscopy http://www.cfai.dur.ac.uk/new/spectroscopy/spectroscopy.html 4.12.2007 A. N. Ramaprakash, IUCAA

Built by Telescope Technologies Ltd., Liverpool, UK Location A glimpse of IGO Built by Telescope Technologies Ltd., Liverpool, UK Location Girawali - 80km NE from Pune, near Junnar Altitude - ~1000m above MSL Telescope Specification - 2m, f/10, Ritchey Chrétien, 6’ radius field Wide Field Corrector to extend field to 21’ radius Mount – Alt-Az on hydrostatic bearings Focus – Cassegrain (1 direct & 4 side ports) Active pneumatic mirror support (20cm thick) Integrated Autoguider 4.12.2007 A. N. Ramaprakash, IUCAA

Observatory Views 4.12.2007 A. N. Ramaprakash, IUCAA

IUCAA Girawali Observatory 4.12.2007 A. N. Ramaprakash, IUCAA

The 2m Telescope 4.12.2007 A. N. Ramaprakash, IUCAA

V-band median seeing in winter - 1.2" Extinction (mag./airmass) Site Vital Statistics V-band median seeing in winter - 1.2" Extinction (mag./airmass) B – 0.26 to 0.74 V – 0.14 to 0.38 Sky Brightness (mag/sq. arcsec) B – 21.8 V – 20.8 R – 19.3 Cloud cover over a period of six months (Nov. – April) 50% photometric 80% spectroscopic (Das et. al, ’99,BASI 27,609) 4.12.2007 A. N. Ramaprakash, IUCAA

IFOSC & Calibration Unit PI CCD NIPI Next Generation Instruments IFOSC & Calibration Unit PI CCD NIPI Next Generation Five Year Plan 4.12.2007 A. N. Ramaprakash, IUCAA

IUCAA Faint Object Spectrograph Camera (IFOSC) UBVRI filters 0.8”, 1”, 1.5”, 2” x 11’ slits 10 grisms (2 echelle & 2 cross dispersers) R = 190 to R = 3700  = 0.35m to  = 0.85m Polarimetry mode 2K x 2K EEV CCD with 13.5m2 pixels 40m/arcsec plate scale on CCD at f/4.5 (demagnification of 2.2) 4.12.2007 A. N. Ramaprakash, IUCAA

Direct Cassegrain Port F/10 Beam Primary Mirror Side Port A & G Unit Lamps Calibration Unit IFOSC IFOSC Object Plane / Telescope Focal Plane CCD Detector 4.12.2007 A. N. Ramaprakash, IUCAA

/ Telescope Focal Plane Calibration Unit Primary Mirror Side Port A & G Unit Lamps Folding Mirror Calibration Unit IFOSC IFOSC Object Plane / Telescope Focal Plane CCD Detector 4.12.2007 A. N. Ramaprakash, IUCAA

/ Telescope Focal Plane Cassegrain Side Port Primary Mirror Side Port Instrument Folding Mirror A & G Unit Lamps Calibration Unit IFOSC IFOSC Object Plane / Telescope Focal Plane CCD Detector 4.12.2007 A. N. Ramaprakash, IUCAA

IFU on IUCAA Telescope : Design Constraints Mechanical Constraints Can’t put Fibre-slit directly at the IFOSC object plane Dimension of the CCD + De-magnification of the IFOSC Maximum Dimension of Projected Fibre Slit on the IFOSC Object Plane ~ 59 mm 4.12.2007 A. N. Ramaprakash, IUCAA

IFU on IUCAA Telescope : Design Constraints Area–Solid Angle Product (AΩ) : Invariant Optical System A1 Ω1 A2 Ω2 A1 . Ω1 = A2 . Ω2 AΩ : Fixed by Telescope’s plate scale and F/number For 1 arc-sec sampling AΩ = 94.265 μm2 - steradians 4.12.2007 A. N. Ramaprakash, IUCAA

Basic Design Configuration of the IFU Fore-Optics Lenslet + Fibre Unit Output Optics IFU Teles-cope Spectro-graph Necessary magnification Proper sampling. Telecentric Output To couple fibre Slit to the Spectrog. Change the f/# of the beam Telecentric Output To Sample the sky image Feed light into the fibre with proper f/# 4.12.2007 A. N. Ramaprakash, IUCAA

Mechanical Configuration of the IFU Fore - Optics Lenslet + Fibre Unit Fibre Slit Primary Mirror Integral Field Unit (IFU) A & G Unit Output Optics Lamps This distance has To be > 80 mm (Opto-Mechanical Design Constraints) IFOSC Object Plane / Telescope Focal Plane Image of Fibre Core ~ Slit 4.12.2007 A. N. Ramaprakash, IUCAA

IFU on IUCAA Telescope : Design Constraints Focal Ratio Degradation (FRD) (F/#)out < (F/#)in Due to Micro-bending/Manufacturing Defects Statistical property Results in increase of (AΩ) product FRD should be minimized 4.12.2007 A. N. Ramaprakash, IUCAA

Focal Ration Degradation (Carrasco & Parry, 1994, MNRAS, 271,1-12) 4.12.2007 A. N. Ramaprakash, IUCAA

Design Optimization of the IFU To minimize FRD : (F / #)in < 5 so that, (F / #)out ~ (F / #)in Further, invariance of AΩ Lower the (F/#)fibre Better Spectral Resolution Smaller the Fiber Core Diameter Smaller (F/#)fibre is desirable 4.12.2007 A. N. Ramaprakash, IUCAA

Design Optimization of the IFU BUT IFOSC accepts ‘F/10’ beam F/# IFOSC F/10 Output Optics Fibre Core Magnification = 10 / (F/#) = M The projected slit width = M X Fibre Core Diameter ‘M’ affects the Spectral resolution 4.12.2007 A. N. Ramaprakash, IUCAA

Design Optimization of the IFU The maximum length of the Fibre Slit = 59 mm / M ‘M’ restricts the total numbers of fibres It is preferred to keep ‘M’ as low as possible. (F/#)fibre should be made as large as possible + Aberrations &Throughput Recipe for Design Optimization 4.12.2007 A. N. Ramaprakash, IUCAA

Basic scientific constraints of the IFU Optimized for the wavelength range 4500 – 8500 Å The sky area would be sampled by 100 Lenslets + Fibres Three spatial sampling scales 1.0" per fibre, 0.8" per fibre and 1.2" per fibre are being used. The sky area sampled by IFU ~ 14 arc-sec X 7 arc-sec (For the case of 1 arc-sec per fibre) 4.12.2007 A. N. Ramaprakash, IUCAA

Fore-optics, Lenslets and Fibres Telescope Focal Plane Lenslet + Fibre Unit u v d Singlet field flattener for telecentric output Achromatic doublet f2 ~ 508mm, v = 10mm, Lenslet Φ= 2.1 mm For different sampling scales, MFore-optics=f2/f1 (17.2, 21.8, 25.75); L2 & v kept fixed; Only L1, u and f1 changed. 4.12.2007 A. N. Ramaprakash, IUCAA

Sampling Diameter at Telescope focal plane Lenslet and Fibre Dpupil f DL= 2.1 mm Magnified Image by Fore-Optics F/number of the Lenslet = 4 F/number of the telescope = 10 Sampling Diameter at Telescope focal plane Lenslets provide continuous sampling of sky; they feed light into the fibre with the appropriate f/#. 4.12.2007 A. N. Ramaprakash, IUCAA

Output Optics IFOSC Output Optics Output Magnification ‘M’ Fibre Core Magnification = 10 / 4 = 2.5 Telecentric output Projected slit width = 2.5 X 70μm (Fibre Core Dia.) Maximum length of the Fibre Slit, = 59 / 2.5 ~ 23.6 mm 4.12.2007 A. N. Ramaprakash, IUCAA

Fore-optics layout – 1" per fibre sampling 4.12.2007 A. N. Ramaprakash, IUCAA

Lenslet Optical Layout 4.12.2007 A. N. Ramaprakash, IUCAA

Fore-optics Spot Diagram (1" sampling) 4.12.2007 A. N. Ramaprakash, IUCAA

Output Optics Layout This distance to be kept > 80 mm 4.12.2007 A. N. Ramaprakash, IUCAA

Output Optics and IFOSC 4.12.2007 A. N. Ramaprakash, IUCAA

Spot diagram at IFOSC object plane 4.12.2007 A. N. Ramaprakash, IUCAA

Spot diagram at IFOSC detector plane 4.12.2007 A. N. Ramaprakash, IUCAA

Fore-optics encircled energy diagram (1" sampling) 4.12.2007 A. N. Ramaprakash, IUCAA

Encircled energy at IFOSC detector plane 4.12.2007 A. N. Ramaprakash, IUCAA

(Ranjan Gupta et al., 2002, BASI, 30, 785) Spectral Resolution Slit width - 220 μm: Grism Peak (Angstrom) Wavelength range (Angstroms) Spectral resolution (Angstrom for 2.2 arc-sec slit) IFORS 5 4000 3300 – 6300 20.02 IFOSC5 6000 5200 – 10300 20.24 IFORS1 3300 – 5540 9.02 IFOSC7 5000 3800 – 6840 9.68 IFOSC8 5800 – 8350 8.14 (Ranjan Gupta et al., 2002, BASI, 30, 785) 4.12.2007 A. N. Ramaprakash, IUCAA

Sensitivity 4.12.2007 A. N. Ramaprakash, IUCAA