Chapter 7 Electrochemistry 7.1 Thermodynamic Properties of Electrolyte Solutions 7.1.1 Electrolyte Strong electrolyte Weak el ectrolyte Real electrolyte.

Slides:



Advertisements
Similar presentations
Electrochemistry Chapter 19
Advertisements

Chapter 20 Electrochemistry
Chemical Equations Preparation for College Chemistry Columbia University Department of Chemistry.
Fig. 22-1a (p.629) A galvanic electrochemical cell at open circuit
Chapter 20: Electrochemistry
ELECTROLYTE CONDUCTANCE
Chemical equilibrium: electrochemistry 자연과학대학 화학과 박영동 교수.
1 Electrochemistry Chapter 18, Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction.
Electrochemistry. It deals with reactions involving a transfer of electrons: 1. Oxidation-reduction phenomena 2. Voltaic or galvanic cell Chemical reactions.
Chemsheets AS006 (Electron arrangement)
SOLUTIONS TO EXAMPLES.
H+H+ H+H+ H+H+ OH - New Way Chemistry for Hong Kong A-Level Book 2 1 Chapter 20 Redox Equilibrium II: Electrochemical Cells 20.1Electrode Potentials 20.2Half.
Chapter 21: Electrochemistry
Chapter 20 Electrochemistry.
Elektrokeemia alused.
Oxidation-Reduction (Redox) Reactions
Lecture 263/30/07. E° F 2 (g) + 2e - ↔ 2F Ag + + e - ↔ Ag (s)+0.80 Cu e - ↔ Cu (s)+0.34 Zn e - ↔ Zn (s)-0.76 Quiz 1. Consider these.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Lecture 223/19/07. Displacement reactions Some metals react with acids to produce salts and H 2 gas Balance the following displacement reaction: Zn (s)
Electrochemical cells Sähkökemian peruseet KE Tanja Kallio C213 CH 4.1 – 4.2, 4.7.
Chapter 18 Electrochemistry
Predicting Spontaneous Reactions
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
§7.11 Polarization of electrode
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
14-1 Electroanalytical chemistry Quantitative methods based on electrical properties when solution is part of an electrochemical cell §Low detection limits.
Chemistry 100 – Chapter 20 Electrochemistry. Voltaic Cells.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Activity Series lithiumpotassiummagnesiumaluminumzincironnickelleadHYDROGENcoppersilverplatinumgold Oxidizes easily Reduces easily Less active More active.
Electrical and Chemical Energy Interconversion
OXIDATION AND REDUCTION. Oxidation Losing electrons The higher positive oxidation number the more the atom has loss control over the electrons, therefore.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
19.4 Spontaneity of Redox Reactions  G = -nFE cell  G 0 = -nFE cell 0 n = number of moles of electrons in reaction F = 96,500 J V mol = 96,500 C/mol.
Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Unit 16 Electrochemistry Oxidation & Reduction. Oxidation verses Reduction Gain oxygen atoms 2 Mg + O 2  2 MgO Lose electrons (e - ) Mg (s)  Mg + 2.
Chem. 1B – 11/10 Lecture. Announcements Mastering Chemistry –Chapter 18 Assignment is due 11/17 Today’s Lecture – Electrochemistry (Ch. 18) –More Nernst.
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
Chapter There is an important change in how students will get their AP scores. This July, AP scores will only be available online. They will.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CHEMISTRY 161 Chapter 4. CHEMICAL REACTIONS 2 HgO (s) → 2Hg (l) + O 2(g) aq 1. properties of solutions 2. reactions in solutions a) precipitation reactions.
ELECTROCHEMISTRY CHEM171 – Lecture Series Four : 2012/01  Redox reactions  Electrochemical cells  Cell potential  Nernst equation  Relationship between.
Nernst Equation  G = -nF  cell  G o = -nF  o cell  G =  cell =  o cell - RT nF ln Q standard non-standard GoGo + RT ln Q.
Redox. Electrochemical Cells The movement of electrons in a redox reaction can be used to generate a useful electric current. The principle is to separate.
CHAPTER SIX(19) Electrochemistry. Chapter 6 / Electrochemistry Chapter Six Contains: 6.1 Redox Reactions 6.2 Galvanic Cells 6.3 Standard Reduction Potentials.
Electrochemistry.
Chemsheets AS006 (Electron arrangement)
Redox Reactions and Electrochemistry
Oxidation-Reduction Reactions
Electrochemical cells
Chemsheets AS006 (Electron arrangement)
Electrochemistry Chapter 19
Electrochemistry Chapter 7.
Electrochemistry Oxidation & Reduction
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Electrochemistry Chapter 19
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal.
Presentation transcript:

Chapter 7 Electrochemistry 7.1 Thermodynamic Properties of Electrolyte Solutions Electrolyte Strong electrolyte Weak el ectrolyte Real electrolyte Potential electrolyte NaNO 3 z + = 1 | z - |= ; BaSO 4 z + = 2 | z - |= ; Na 2 SO 4 z + = 1 | z - |= ; Ba(NO 3 ) 2 z + = 2 | z - |= 。

7.1.2 Chemical Potential of Electrolyte and Ions  B = +  + +  

d T=0, d p=0, d n A =0  B = +  + + 

7.1.3 Activity and Activity Coefficient ideal solution real solution

7.1.4 Mean Activity of Ions and Mean Activity Coefficients

7.1.5 The Debye - Hückel Limiting Law Ionic atmosphere

H2OH2O b<0.01 ~ 0.001mol·kg -1 I — Ionic Strength

7.1.6 Ionic Strength I<0.01mol·kg -1

7.2 Conductive Properties of Electrolyte Solutions Conductance G  Conductance;unit Simens S , 1S=1Ω -1 。  Resistivity ; Ω ·m.   Conductivity ; S·m -1.  =K (l/A) G K  Cell constant

7.2.2 Molar Conductance Λ m unit S · m 2 · mol -1 。 Λ m (K 2 SO 4 )= S·m 2 ·mol -1 Λ m ( K 2 SO 4 )= S · m 2 · mol -1

7.2.3 Concentration dependence of  and Λ m k/(S  m -1 ) H 2 SO 4 KOH KCl MgSO 4 CH 3 COOH c/(mol  dm -3 )   c  m  c  m /(S  cm 2  mol -1 ) HCl NaOH AgNO 3 CH 3 COOH c B =0 molar conductivity of infinite dilution

7.2.4 Independent Migration of Ion Electrolytic Equilibrium of Weak Electrolytes At equilibrium

a u =  u b u /b  =( 1-α )  u b/b  HOAc H + + OAc -

7.3 Electrochemical system Metal

Metal 1Metal 2 Contact potential

Liquid-junction potential (diffusion potential)

7.4 Equilibrium electrochemistry Reversible cell (1) Electrode reactions and cell reaction are reversible (2) I  0 (equilibrium)

7.4.2 The Cell Potentials of Reversible Cell

7.4.3 The Nernst Equation ---Standard Cell Potentials

7.4.4 Standard Electrode Potential Standard Hydrogen Electrode ---SHE H + [a(H + ) =1 ] | H 2 (p  =100kPa) | Pt E  =0 SHE  electrode in question (reduction)

Table ℃时某些电极的标准电极电势 (p  = 100kPa) 电极电极反应(还原) E  /V K+KK+K K + + e - == K Na +  Na Na + + e - == Na Mg 2+  Mg Mg e - == Mg Mn 2+  Mn Mn e - == Mn Zn 2+  Zn Zn e - == Zn Fe 2+  Fe Fe e - == Fe Co 2+  Co Co e - == Co Ni 2+  Ni Ni e - == Ni Sn 2+  Sn Sn 2+ +2e - == Sn Pb 2+  Pb Pb 2+ +2e - == Pb H +  H 2  Pt H + +e - == 1/2H ( 定义量 ) Cu 2+  Cu Cu 2+ +2e - == Cu Cu +  Cu Cu + +e - == Cu

Hg 2 2+  Hg Hg 2+ +2e - ==Hg Ag +  Ag Ag + +e - == Ag OH -  O 2  Pt 1/2O 2 +H 2 O+2e - ==2OH H +  O 2  Pt O 2 +4H + + 2e - ==H 2 O I -  I 2  Pt 1/2I 2 + e - == I Br -  Br 2  Pt 1/2Br 2 + e - ==Br Cl -  Cl 2  Pt 1/2Cl 2 + e - == Cl I -  AgI  Ag AgI + e - ==Ag+I Br -  AgBr  Ag AgBr + e - ==Ag+Br Cl -  AgCl  Ag AgCl + e - ==Ag+Cl Cl -  Hg 2 Cl 2  Hg Hg 2 Cl 2 + 2e - == 2Hg+2Cl OH -  Ag 2 O  Ag Ag 2 O+2e - ==2Ag+2OH SO 4 2-  Hg 2 SO 4  Hg Hg 2 SO 4 +2e - == 2Hg+2SO SO 4 2-  PbSO 4  Pb PbSO 4 + 2e - == Pb +SO

Oxidation state + 2e -  Reduction state E MF = E (R, Reduction)- E (L, Reduction) Cl - - (a) | Cl 2 | Pt : For example

7.5 Application of E MF Measurements Determination of thermodynamics quantities Δ r G m,Δ r S m andΔ r H m Δ r G m = - zFE MF Temperature coefficient of cell

7.5.2 Determination of γ ±

7.5.3 Determination of pH H + | Q , QH 2 | Pt Q [ a(Q) ] +2H + [ a(H + )]+2e -  QH 2 [ a(QH 2 ) ] 25 ℃, E = ( pH) V Q HO - - OH QH 2 Q  QH 2 a ( Q)≈a(QH 2 ) Pt | H 2 (p  ) | solution(pH=x) | KCl (a) | Hg 2 Cl 2 | Hg

7.5.4 Determination of K  and K sp Determination of reaction direction Δ r G m = - ZFE MF < 0

7.6 kinetics of electrochemical system Rate of electrochemical reaction M + + e - M  ca ca EcEc EaEa M a ca c M + +e M Cathode process υ c ; anode process υ a ;

v - Rate of electrochemical reaction mol  m -2  s -1 Current density j j=ZFυ j 0 :exchange current density

7.6.2 Polarization and Overpotential { a}{ a} {  c,e } {  a,e } { c}{ c} { e}{ e}{  }     { a}{ a} { c}{ c} {j}{j} (a) electrolytic cell { }{ } { a}{ a} {  a,e } {  c,e } { c}{ c} { e}{ e}{  }     {j}{j} (b)chemical electric source { c}{ c} { a}{ a} { }{ } polarization curve Overpotential : η a — anode overpotential η c — anode overpotential

(1). Diffusion overpotential Ag + c0c0 c'c'  Diffusion layer Ag M + + e - M (2). Electrochemical overpotential

7.6.3 Electrolytic cell (- ) Pt | H 2 | OH - ( H 2 O )| O 2 (p) | Pt ( + ) H2H2 O2O2 H2OH2OH2OH2O PtPt PtPt anode(+)cathode(-) + — I Power supply

Pt A V R KOH 外电源 电阻 伏特计 电流计 + _ KOH VdVd  V  II Decomposition voltage Theory decomposition voltage Real decomposition voltage Δ  (real)=Δ  (theory) + (η a + | η c | ) + IR

7.7 Power production and corrosion Dry Cell Zn | NH 4 Cl | MnO 2 | C Negative electrode : Zn + 2NH 4 Cl  Zn(NH 3 ) 2 Cl 2 + 2H + + 2e - positive electrode : 2MnO 2 + 2H + + 2e -  2MnOOH Cell reaction : Zn + 2MnO 2 + 2NH 4 Cl  Zn(NH 3 ) 2 Cl 2 + 2MnOOH

Storage Cell Pb | H 2 SO 4 (ρ = 1.28g  cm -3 ) | PbO 2 Negative electrode : Pb + H 2 SO 4  PbSO 4 + 2H + + 2e - positive electrode : PbO 2 + H 2 SO 4 + 2H + + 2e -  PbSO 4 + 2H 2 O Cell reaction : PbO 2 + Pb + 2H 2 SO 4 2PbSO 4 + 2H 2 O

Silver-zinc Cell Zn | KOH(ω B = 0.40) | Ag 2 O | Ag Negative electrode: 2Zn + 4OH -  2Zn(OH) 2 + 4e - positive electrode : Ag 2 O 2 + 2H 2 O + 4e -  2Ag + 4OH - Cell reaction : 2Zn + Ag 2 O 2 + 2H 2 O 2Ag + 2Zn(OH) 2

Fuel cell M | H 2 (g) | KOH | O 2 (g) | M

Efficiency of Chemical Electric Source

7.7.5 Electrochemical corrosion

M+M+ 2H + H2H2 2e M M+M+ 2H + H2H2 2e M1M1 M2M2 Anode process : Fe  Fe 2 + +2e - Cathode process : (i) 2H + +2e -  H 2 ↑ (ii) O 2 +4H + +4e -  2H 2 O (i) cell reaction : Fe+2H +  Fe 2 + +H 2 (ii) cell reaction : Fe+(1/2)O 2 +2H +  Fe 2+ +H 2 O

{  )} S I {  c,e } {  a,e }