Public-Key Encryption

Slides:



Advertisements
Similar presentations
Cryptography and Network Security Chapter 9
Advertisements

Cryptography and Network Security
Public Key Encryption Algorithm
Public Key Algorithms …….. RAIT M. Chatterjee.
Dr. Lo’ai Tawalbeh Summer 2007 Chapter 9 – Public Key Cryptography and RSA Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus INCS.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography and Network Security Chapter 9. Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively.
Public Key Cryptography and the RSA Algorithm
Cryptography1 CPSC 3730 Cryptography Chapter 9 Public Key Cryptography and RSA.
CSCE 790: Computer Network Security Chin-Tser Huang University of South Carolina.
Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications.
Dr.Saleem Al_Zoubi1 Cryptography and Network Security Third Edition by William Stallings Public Key Cryptography and RSA.
1 Pertemuan 08 Public Key Cryptography Matakuliah: H0242 / Keamanan Jaringan Tahun: 2006 Versi: 1.
Chapter 9 – Public Key Cryptography and RSA Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both.
Cryptography and Network Security Chapter 9 5th Edition by William Stallings Lecture slides by Lawrie Brown.
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Public-Key Cryptography and RSA CSE 651: Introduction to Network Security.
ASYMMETRIC CIPHERS.
“RSA”. RSA  by Rivest, Shamir & Adleman of MIT in 1977  best known & widely used public-key scheme  RSA is a block cipher, plain & cipher text are.
Introduction to Public Key Cryptography
 Introduction  Requirements for RSA  Ingredients for RSA  RSA Algorithm  RSA Example  Problems on RSA.
Prime Numbers Prime numbers only have divisors of 1 and self
Cryptography A little number theory Public/private key cryptography –Based on slides of William Stallings and Lawrie Brown.
Public Key Cryptography and the RSA Algorithm Cryptography and Network Security by William Stallings Lecture slides by Lawrie Brown Edited by Dick Steflik.
Applied Cryptography (Public Key) RSA. Public Key Cryptography Every Egyptian received two names, which were known respectively as the true name and the.
Information Security Principles & Applications
Network Security Lecture 17 Presented by: Dr. Munam Ali Shah.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Public Key Cryptography and RSA” Dr. Monther Aldwairi New York Institute of Technology- Amman Campus 11/9/2009 INCS 741: Cryptography 11/9/20091Dr. Monther.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Public Key Cryptography. symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if.
1 Public-Key Cryptography and Message Authentication.
Computer and Network Security Rabie A. Ramadan Lecture 6.
Cryptography and Network Security Chapter 9 - Public-Key Cryptography
Politiche delle Reti e Sicurezza 2008 UNICAM. M.L.Maggiulli © Maria Laura Maggiulli Dipartimento di Informatica.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
PUBLIC-KEY CRYPTOGRAPH IT 352 : Lecture 2- part3 Najwa AlGhamdi, MSc – 2012 /1433.
Cryptography and Network Security Public Key Cryptography and RSA.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Chapter 3 – Public Key Cryptography and RSA (A). Private-Key Cryptography traditional private/secret/single-key cryptography uses one key shared by both.
Chapter 9 Public Key Cryptography and RSA. Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender.
Fall 2002CS 395: Computer Security1 Chapter 9: Public Key Cryptography.
Public Key Algorithms Lesson Introduction ●Modular arithmetic ●RSA ●Diffie-Hellman.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Computer Security Lecture 5 Ch.9 Public-Key Cryptography And RSA Prepared by Dr. Lamiaa Elshenawy.
1 Introduction to Computer Security Topic 2. Basic Cryptography (Part II)
Lecture 3 (Chapter 9) Public-Key Cryptography and RSA Prepared by Dr. Lamiaa M. Elshenawy 1.
By Marwan Al-Namari & Hafezah Ben Othman Author: William Stallings College of Computer Science at Al-Qunfudah Umm Al-Qura University, KSA, Makkah 1.
Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively as the true name and the good name, or the.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
CIM PKI011 Public-key Encryption and Hash Functions Cryptography and Network Security Third Edition by William Stallings Modified from lecture slides.
Lecture 6. RSA Use in Encryption to encrypt a message M the sender: – obtains public key of recipient PU={e,n} – computes: C = M e mod n, where 0≤M
CSEN 1001 Computer and Network Security Amr El Mougy Mouaz ElAbsawi.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Lecture 5 Asymmetric Cryptography. Private-Key Cryptography Traditional private/secret/single key cryptography uses one key Shared by both sender and.
Visit for more Learning Resources
Lecture 5 RSA DR. Nermin Hamza.
G. Pullaiah College of Engineering and Technology
Public Key Cryptography and the RSA Algorithm
Cryptography and Network Security
Public Key Encryption and the RSA Algorithm
The RSA Algorithm JooSeok Song Tue.
Private-Key Cryptography
ICS 353: Design and Analysis of Algorithms
The RSA Algorithm JooSeok Song Tue.
Introduction to Cryptography
Presentation transcript:

Public-Key Encryption Introduction to Number Theory A prime number is an integer that can only be divided without remainder by positive and negative values of itself and 1. Prime numbers play a critical role both in number theory and in cryptography. Two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem. An important requirement in a number of cryptographic algorithms is the ability to choose a large prime number. An area of ongoing research is the development of efficient algorithms for determining if a randomly chosen large integer is a prime number.

Fermat's Theorem p = 5,a = 3 ap = 35 = 243 3(mod 5) = a(mod p) Fermat's theorem states the following: If p is prime and a is a positive integer not divisible by p, then An alternative form of Fermat's theorem is also useful: If p is prime and a is a positive integer, then p = 5,a = 3 ap = 35 = 243 3(mod 5) = a(mod p) p = 5, a = 10 ap = 105 = 100000 10(mod 5) = 0(mod 5) = a(mod p)

Euler Totient Function ø(n) to compute ø(n) need to count number of residues to be excluded in general need prime factorization, but for p (p prime) ø(p) = p-1 for p.q (p,q prime) ø(pq) =(p-1)x(q-1) eg. ø(37) = 36 ø(21) = (3–1)x(7–1) = 2x6 = 12 To compute ø(n) need to count the number of residues to be excluded. In general you need use a complex formula on the prime factorization of n, but have a couple of special cases as shown.

Public-Key Cryptography public-key/two-key/asymmetric cryptography involves the use of two keys: a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures is asymmetric because those who encrypt messages or verify signatures cannot decrypt messages or create signatures Emphasize here the radical difference with Public-Key Cryptography is the use of two related keys but with very different roles and abilities. Anyone knowing the public key can encrypt messages or verify signatures, but cannot decrypt messages or create signatures, all thanks to some clever use of number theory.

Why Public-Key Cryptography? developed to address two key issues: key distribution – how to have secure communications in general without having to trust a KDC with your key digital signatures – how to verify a message comes intact from the claimed sender public invention due to Whitfield Diffie & Martin Hellman at Stanford Uni in 1976 known earlier in classified community The concept of public-key cryptography evolved from an attempt to attack two of the most difficult problems associated with symmetric encryption: key distribution and digital signatures. The idea of public key schemes, and the first practical scheme, which was for key distribution only, was published in 1977 by Diffie & Hellman. The concept had been previously described in a classified report in 1970 by James Ellis (UK CESG) - and subsequently declassified [ELLI99]. Its interesting to note that they discovered RSA first, then Diffie-Hellman, opposite to the order of public discovery! There is also a claim that the NSA knew of the concept in the mid-60’s [SIMM93].

Public-Key Applications can classify uses into 3 categories: encryption/decryption (provide secrecy) digital signatures (provide authentication) key exchange (of session keys) some algorithms are suitable for all uses, others are specific to one Public-key systems are characterized by the use of a cryptographic type of algorithm with two keys. Depending on the application, the sender uses either the sender’s private key or the receiver’s public key, or both, to perform some type of cryptographic function. In broad terms, we can classify the use of public-key cryptosystems into the three categories: • Encryption/decryption: The sender encrypts a message with the recipient’s public key. • Digital signature: The sender “signs”a message with its private key, either to the whole message or to a small block of data that is a function of the message. • Key exchange: Two sides cooperate to exchange a session key. Several different approaches are possible, involving the private key(s) of one or both parties. Some algorithms are suitable for all three applications, whereas others can be used only for one or two of these applications.

RSA by Rivest, Shamir & Adleman of MIT in 1977 best known & widely used public-key scheme uses large integers (eg. 1024 bits) security due to cost of factoring large numbers RSA is the best known, and by far the most widely used general public key encryption algorithm, and was first published by Rivest, Shamir & Adleman of MIT in 1978 [RIVE78]. Since that time RSA has reigned supreme as the most widely accepted and implemented general-purpose approach to public-key encryption. It is based on exponentiation in a finite (Galois) field over integers modulo a prime, using large integers (eg. 1024 bits). Its security is due to the cost of factoring large numbers.

RSA ingredients We are now ready to state the RSA scheme. The ingredients are the following: We are now ready to state the RSA scheme. The ingredients are the following: p,q, two prime numbers (private, chosen) n = pq (public, calculated) e, with gcd(f(n),e) = 1;1 < e < f(n) (public, chosen) d e1(mod f(n)) (private, calculated)

RSA Algorithm

RSA Example - Key Setup Select primes: p=17 & q=11 Compute n = pq =17 x 11=187 Compute ø(n)=(p–1)(q-1)=16 x 10=160 Select e: gcd(e,160)=1; choose e=7 Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23x7=161= 10x160+1 Publish public key PU={7,187} Keep secret private key PR={23,187} Here walk through example RSA key generation using “trivial” sized numbers. Selecting primes requires the use of a primality test. Finding d as inverse of e mod ø(n) requires use of Euclid’s Inverse algorithm (see Ch4)

Clarification we need to calculate C = 887 mod 187. Exploiting the properties of modular arithmetic, we can do this as follows: 887 mod 187 = [(884 mod 187) x (882 mod 187) x (881 mod 187)] mod 187 881 mod 187 = 88 882 mod 187 = 7744 mod 187 = 77 884 mod 187 = 59,969,536 mod 187 = 132 887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11

Security of RSA Four possible approaches to attacking the RSA: Brute force: This involves trying all possible private keys. Mathematical attacks: There are several approaches, all equivalent in effort to factoring the product of two primes. Timing attacks: These depend on the running time of the decryption algorithm. Chosen cipher text attacks: This type of attack exploits properties of the RSA algorithm.

Factoring Problem mathematical approach takes 3 forms: factor n=p.q, hence compute ø(n) and then d determine ø(n) directly and compute d find d directly currently believe all equivalent to factoring have seen slow improvements over the years as of May-05 best is 200 decimal digits (663) bit with LS biggest improvement comes from improved algorithm cf QS to GHFS to LS currently assume 1024-2048 bit RSA is secure ensure p, q of similar size and matching other constraints We can identify three approaches to attacking RSA mathematically, as shown. Mathematicians currently believe all equivalent to factoring. See Stallings Table 9.4 for progress in factoring, where see slow improvements over the years, with the biggest improvements coming from improved algorithms. The best current algorithm is the “Lattice Sieve” (LS), which replaced the “Generalized Number Field Sieve” (GNFS), which replaced the “Quadratic Sieve”(QS). Have to assume computers will continue to get faster, and that better factoring algorithms may yet be found. Numbers of size 1024-2048 bits look reasonable at present, provided the factors meet other constraints.

Timing Attacks developed by Paul Kocher in mid-1990’s exploit timing variations in operations eg. multiplying by small vs large number or IF's varying which instructions executed infer operand size based on time taken RSA exploits time taken in exponentiation countermeasures use constant exponentiation time add random delays blind values used in calculations Had a new category of attacks developed by Paul Kocher in mid-1990’s, based on observing how long it takes to compute the cryptographic operations. Timing attacks are applicable not just to RSA, but to other public-key cryptography systems. This attack is alarming for two reasons: It comes from a completely unexpected direction and it is a ciphertextonly attack. A timing attack is somewhat analogous to a burglar guessing the combination of a safe by observing how long it takes for someone to turn the dial from number to number. Although the timing attack is a serious threat, there are simple countermeasures that can be used, including using constant exponentiation time algorithms, adding random delays, or using blind values in calculations.

Chosen Cipher text Attacks RSA is vulnerable to a Chosen Ciphertext Attack (CCA) attackers chooses ciphertexts & gets decrypted plaintext back choose ciphertext to exploit properties of RSA to provide info to help cryptanalysis can counter with random pad of plaintext or use Optimal Asymmetric Encryption Padding (OASP) The RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is defined as an attack in which adversary chooses a number of ciphertexts and is then given the corresponding plaintexts, decrypted with the target’s private key. The adversary exploits properties of RSA and selects blocks of data that, when processed using the target’s private key, yield information needed for cryptanalysis. Can counter simple attacks with random pad of plaintext. More sophisticated variants need to modify the plaintext using a procedure known as optimal asymmetric encryption padding (OAEP).

Examples on RSA Perform encryption and decryption using the RSA algorithm, for the following: p = 5; q = 11, e = 3; M = 9 p = 7; q = 11, e = 17; M = 8 p = 11; q = 13, e = 11; M = 7 p = 3; q = 11, e = 7; M = 5

Examples on RSA RSA Algorithm Example Choose p = 3 and q = 11 Compute n = p * q = 3 * 11 = 33 Compute φ(n) = (p - 1) * (q - 1) = 2 * 10 = 20 Choose e such that 1 < e < φ(n) and e and n are coprime. Let e = 7 Compute a value for d such that (d * e) % φ(n) = 1. One solution is d = 3 [(3 * 7) % 20 = 1] Public key is (e, n) => (7, 33) Private key is (d, n) => (3, 33) The encryption of m = 2 is c = 27 % 33 = 29 The decryption of c = 29 is m = 293 % 33 = 2

Creative Minds never gives up End of Sections Creative Minds never gives up Thank you