CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.

Slides:



Advertisements
Similar presentations
Cryptography and Network Security Chapter 9
Advertisements

Dr. Lo’ai Tawalbeh Summer 2007 Chapter 9 – Public Key Cryptography and RSA Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus INCS.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography and Network Security Chapter 9. Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively.
Public Key Cryptography and the RSA Algorithm
Cryptography1 CPSC 3730 Cryptography Chapter 9 Public Key Cryptography and RSA.
CSCE 790: Computer Network Security Chin-Tser Huang University of South Carolina.
Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications.
Dr.Saleem Al_Zoubi1 Cryptography and Network Security Third Edition by William Stallings Public Key Cryptography and RSA.
1 Pertemuan 08 Public Key Cryptography Matakuliah: H0242 / Keamanan Jaringan Tahun: 2006 Versi: 1.
Cryptography and Network Security Chapter 9 5th Edition by William Stallings Lecture slides by Lawrie Brown.
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
“RSA”. RSA  by Rivest, Shamir & Adleman of MIT in 1977  best known & widely used public-key scheme  RSA is a block cipher, plain & cipher text are.
Introduction to Public Key Cryptography
Public Key Model 8. Cryptography part 2.
 Introduction  Requirements for RSA  Ingredients for RSA  RSA Algorithm  RSA Example  Problems on RSA.
Prime Numbers Prime numbers only have divisors of 1 and self
Cryptography A little number theory Public/private key cryptography –Based on slides of William Stallings and Lawrie Brown.
Public Key Cryptography and the RSA Algorithm Cryptography and Network Security by William Stallings Lecture slides by Lawrie Brown Edited by Dick Steflik.
Applied Cryptography (Public Key) RSA. Public Key Cryptography Every Egyptian received two names, which were known respectively as the true name and the.
Information Security Principles & Applications
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Network Security Lecture 17 Presented by: Dr. Munam Ali Shah.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Public Key Cryptography and RSA” Dr. Monther Aldwairi New York Institute of Technology- Amman Campus 11/9/2009 INCS 741: Cryptography 11/9/20091Dr. Monther.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Public-Key Encryption
Public Key Cryptography. symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if.
1 Public-Key Cryptography and Message Authentication.
Computer and Network Security Rabie A. Ramadan Lecture 6.
Cryptography and Network Security Chapter 9 - Public-Key Cryptography
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
PUBLIC-KEY CRYPTOGRAPH IT 352 : Lecture 2- part3 Najwa AlGhamdi, MSc – 2012 /1433.
Cryptography and Network Security Public Key Cryptography and RSA.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Chapter 3 – Public Key Cryptography and RSA (A). Private-Key Cryptography traditional private/secret/single-key cryptography uses one key shared by both.
Scott CH Huang COM 5336 Cryptography Lecture 6 Public Key Cryptography & RSA Scott CH Huang COM 5336 Cryptography Lecture 6.
Chapter 9 Public Key Cryptography and RSA. Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender.
Fall 2002CS 395: Computer Security1 Chapter 9: Public Key Cryptography.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Computer Security Lecture 5 Ch.9 Public-Key Cryptography And RSA Prepared by Dr. Lamiaa Elshenawy.
1 Introduction to Computer Security Topic 2. Basic Cryptography (Part II)
Lecture 3 (Chapter 9) Public-Key Cryptography and RSA Prepared by Dr. Lamiaa M. Elshenawy 1.
By Marwan Al-Namari & Hafezah Ben Othman Author: William Stallings College of Computer Science at Al-Qunfudah Umm Al-Qura University, KSA, Makkah 1.
Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively as the true name and the good name, or the.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
CIM PKI011 Public-key Encryption and Hash Functions Cryptography and Network Security Third Edition by William Stallings Modified from lecture slides.
Lecture 6. RSA Use in Encryption to encrypt a message M the sender: – obtains public key of recipient PU={e,n} – computes: C = M e mod n, where 0≤M
CSEN 1001 Computer and Network Security Amr El Mougy Mouaz ElAbsawi.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Lecture 5 Asymmetric Cryptography. Private-Key Cryptography Traditional private/secret/single key cryptography uses one key Shared by both sender and.
Asymmetric Encryption
Visit for more Learning Resources
Lecture 5 RSA DR. Nermin Hamza.
G. Pullaiah College of Engineering and Technology
Cryptography and Network Security
Chapter 9 – Public Key Cryptography and RSA
Public Key Cryptography and the RSA Algorithm
RSA Algorithm Cryptography and Network Security by William Stallings
Cryptography and Network Security
The RSA Algorithm JooSeok Song Tue.
Private-Key Cryptography
ICS 353: Design and Analysis of Algorithms
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security Chapter 9
Cryptography and Network Security
Chapter -5 PUBLIC-KEY CRYPTOGRAPHY AND RSA
Presentation transcript:

CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina

9/14/20062 Insufficiencies with Symmetric Encryption Symmetric encryption is not enough to address two key issues key distribution – how to have secure communications in general without having to trust a KDC with your key? digital signatures – how to verify that a received message really comes from the claimed sender?

9/14/20063 Advent of Asymmetric Encryption Probably most significant advance in the 3000 year history of cryptography Use two keys: a public key and a private key Asymmetric since parties are not equal Clever application of number theory concepts instead of merely substitution and permutation

9/14/20064 How Asymmetric Encryption Works Asymmetric encryption uses two keys that are related to each other a public key, which may be known to anybody, is used to encrypt messages, and verify signatures a private key, known only to the owner, is used to decrypt messages encrypted by the matching public key, and create signatures the key used to encrypt messages or verify signatures cannot decrypt messages or create signatures

9/14/20065 Asymmetric Encryption for Confidentiality

9/14/20066 Asymmetric Encryption for Authentication

9/14/20067 Public-Key Cryptosystems

9/14/20068 Public-Key Characteristics Public-Key algorithms rely on two keys where: it is computationally infeasible to find decryption key knowing only algorithm & encryption key it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known either of the two related keys can be used for encryption, with the other used for decryption (for some algorithms)

9/14/20069 Applications for Asymmetric Encryption Three categories Encryption/decryption: sender encrypts a message with receiver’s public key Digital signature: sender “signs” a message with its private key Key exchange: two sides exchange a session key

9/14/ Security of Asymmetric Encryption Like symmetric schemes brute-force exhaustive search attack is always theoretically possible, but keys used are too large (>512bits) Not more secure than symmetric encryption, dependent on size of key Security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems Generally the hard problem is known, just made too hard to do in practice Require using very large numbers, so is slow compared to symmetric schemes

9/14/ RSA Invented by Rivest, Shamir & Adleman of MIT in 1977 Best known and widely used public-key scheme Based on exponentiation in a finite (Galois) field over integers modulo a prime exponentiation takes O((log n) 3 ) operations (easy) Use large integers (e.g bits) Security due to cost of factoring large numbers factorization takes O(e log n log log n ) operations (hard)

9/14/ RSA Key Setup Each user generates a public/private key pair by select two large primes at random: p, q compute their system modulus n=p·q note ø(n)=(p-1)(q-1) select at random the encryption key e where 1<e<ø(n), gcd(e,ø(n))=1 solve following equation to find decryption key d e·d=1 mod ø(n) and 0≤d≤n publish their public encryption key: KU= {e,n} keep secret private decryption key: KR= {d,n}

9/14/ RSA Usage To encrypt a message M: sender obtains public key of receiver KU={e,n} computes: C=M e mod n, where 0≤M<n To decrypt the ciphertext C: receiver uses its private key KR={d,n} computes: M=C d mod n Message M must be smaller than the modulus n (cut into blocks if needed)

9/14/ Why RSA Works Euler's Theorem: a ø(n) mod n = 1 where gcd(a,n)=1 In RSA, we have n=p·q ø(n)=(p-1)(q-1) carefully chosen e and d to be inverses mod ø(n) hence e·d=1+k·ø(n) for some k Hence : C d = (M e ) d = M 1+k·ø(n) = M 1 ·(M ø(n) ) k = M 1 ·(1) k = M 1 = M mod n

9/14/ RSA Example: Computing Keys 1. Select primes: p=17, q=11 2. Compute n=pq=17×11= Compute ø(n)=(p–1)(q-1)=16×10= Select e: gcd(e,160)=1 and e<160  choose e=7 5. Determine d: de=1 mod 160 and d<160  d=23 since 23×7=161=10× Publish public key KU={7,187} 7. Keep secret private key KR={23,187}

9/14/ RSA Example: Encryption and Decryption Given message M = 88 ( 88<187 ) Encryption: C = 88 7 mod 187 = 11 Decryption: M = mod 187 = 88

9/14/ Exponentiation Use a property of modular arithmetic [(a mod n)  (b mod n)]mod n = (a  b)mod n Use the Square and Multiply Algorithm to multiply the ones that are needed to compute the result Look at binary representation of exponent Only take O(log 2 n) multiples for number n e.g. 7 5 = 7 4 ·7 1 = 3·7 = 10 (mod 11) e.g = ·3 1 = 5·3 = 4 (mod 11)

9/14/ RSA Key Generation Users of RSA must: determine two primes at random - p,q select either e or d and compute the other Primes p,q must not be easily derived from modulus n=p·q means p,q must be sufficiently large typically guess and use probabilistic test Exponents e, d are multiplicative inverses, so use Inverse algorithm to compute the other

9/14/ Security of RSA Four approaches to attacking RSA brute force key search (infeasible given size of numbers) mathematical attacks (based on difficulty of computing ø(n), by factoring modulus n) timing attacks (on running of decryption) chosen ciphertext attacks (given properties of RSA)

9/14/ Factoring Problem Mathematical approach takes 3 forms: factor n=p·q, hence find ø(n) and then d determine ø(n) directly and find d find d directly Currently believe all equivalent to factoring have seen slow improvements over the years as of May-05 best is 200 decimal digits (663 bits) with LS biggest improvement comes from improved algorithm cf “Quadratic Sieve” to “Generalized Number Field Sieve” to “Lattice Sieve” bit RSA is secure barring dramatic breakthrough ensure p, q of similar size and matching other constraints

9/14/ Timing Attacks Developed in mid-1990’s Exploit timing variations in operations e.g. multiplying by small vs large number Infer operand size based on time taken RSA exploits time taken in exponentiation Countermeasures use constant exponentiation time add random delays blind values used in calculations

9/14/ Chosen Ciphertext Attacks RSA is vulnerable to a Chosen Ciphertext Attack (CCA) attackers chooses ciphertexts and gets decrypted plaintext back choose ciphertext to exploit properties of RSA to provide info to help cryptanalysis can counter with random pad of plaintext or use Optimal Asymmetric Encryption Padding (OAEP)

9/14/ Next Class Key management with asymmetric encryption Diffie-Hellman key exchange Read Chapter 10

9/14/ Defeat Online Piracy What security service does anti-piracy conflict with? Peer-to-peer networking technologies Napster Gnutella FastTrack eDonkey BitTorrent