Uses of DNA technology You will need to convince a grant committee to fund further research into your area of application of DNA technology Read your assigned.

Slides:



Advertisements
Similar presentations
Production of Human Growth Hormone in Genetically Modified Bacteria
Advertisements

Chapter 20 DNA Technology & Genomics. Slide 2 of 14 Biotechnology Terms Biotechnology Process of manipulating organisms or their components to make useful.
Changing the living world
DNA Technology Terms to know: Recombinant DNA –Genes from different sources are combined and transferred into cells. Ex. Fungus resistance gene put into.
Ch 12. Lac Operon 0Kh4&feature=relatedhttp:// 0Kh4&feature=related
Ch 12. Researchers can insert desired genes into plasmids, creating recombinant DNA and insert those plasmids into bacteria Bacterium Bacterial chromosome.
Biotechniques.
Gene Cloning Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Most methods for cloning pieces.
Enzyme names to learn 1.Reverse transcriptase 2.RNA polymerase 3.DNA helicase 4.DNA ligase 5.DNA polymerase 6.Restriction endonuclease A.Unwinds DNA helix.
DNA TECHNOLOGY AND THE HUMAN GENOME. MOST DNA TECHNOLOGY IS NATURALLY OCCURING PHENOMENA THAT WE MANIPULATE TO SERVE OUR CURIOUSITY AND INTEREST – BACTERIAL.
 We have made the gene through Recombinant DNA – how do we get lots of copies??
 DNA – Double Helix Structure  Each spiral strand is composed of a sugar phosphate backbone and attached bases  4 Bases: Adenine (A), Guanine(G), Cytosine.
DNA Technology and Genomics
Genetic Engineering Do you want a footer?.
Genetic Engineering. Tools of Molecular Biology DNA Extraction Cutting DNA Restriction Enzymes Recognize certain sequences of DNA and cut the hydrogen.
Objective 2: TSWBAT describe the basic process of genetic engineering and the applications of it.
CHAPTER 20 BIOTECHNOLOGY: PART I. BIOTECHNOLOGY Biotechnology – the manipulation of organisms or their components to make useful products Biotechnology.
Chapter 20~DNA Technology & Genomics. Who am I? Recombinant DNA n Def: DNA in which genes from 2 different sources are linked n Genetic engineering:
Recombinant DNA and Biotechnology Gene cloning in bacterial plasmids Plasmid – extrachromosomal piece of DNA not necessary for survival can be transferred.
Genetics of Cancer.
Technological Solutions. In 1977 Sanger et al. were able to work out the complete nucleotide sequence in a virus – (Phage 0X174) This breakthrough allowed.
© 2012 Pearson Education, Inc. Lecture by Edward J. Zalisko PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor,
End Show Slide 1 of 32 Copyright Pearson Prentice Hall Manipulating DNA.
Manipulating DNA.
AP Biology Biotechnology Part 3. Bacterial Cloning Process Bacterium Bacterial chromosome Plasmid Gene inserted into plasmid Cell containing gene of interest.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Biotechnology Methods Producing Recombinant DNAProducing Recombinant DNA Locating Specific GenesLocating Specific Genes Studying DNA SequencesStudying.
DNA Technology - 2.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
DNA Technology. 1.Isolation – of the DNA containing the required gene 2.Insertion – of the DNA into a vector 3.Transformation – Transfer of DNA into a.
Genetic Engineering Chapter 13 Recombinant DNA Transformation Biotechnology Gel Electrophoresis PCR.
Genetics 6: Techniques for Producing and Analyzing DNA.
Human awareness.  M16.1 Know that the DNA can be extracted from cells  Genetic engineering and /or genetic modification have been made possible by isolating.
Fig Fig Fig Fig Fig
Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments.
Genetic Engineering Genetic engineering is also referred to as recombinant DNA technology – new combinations of genetic material are produced by artificially.
Manipulating DNA. Scientists use their knowledge of the structure of DNA and its chemical properties to study and change DNA molecules Different techniques.
Methods for DNA Transfer. Transferring Genes Vectors are used to move genes around Plasmids, Bacteriophage, Cosmids, YACs, BACs, Viruses are used E. coli.
Molecular Genetic Technologies Gel Electrophoresis PCR Restriction & ligation Enzymes Recombinant plasmids and transformation DNA microarrays DNA profiling.
Plasmids and Vectors Aims:
Recombinant DNA Technology. DNA replication refers to the scientific process in which a specific sequence of DNA is replicated in vitro, to produce multiple.
DNA Technology Ch. 20. The Human Genome The human genome has over 3 billion base pairs 97% does not code for proteins Called “Junk DNA” or “Noncoding.
 What is different between these 2 sequences? GGAATTCCTAGCAAT CCTTAAGGATCGTTA CTACGTGAGGAATTC GATGCACTCCTTAAG.
Copyright © 2009 Pearson Education, Inc. Head Tail fiber DNA Tail.
A Molecular Toolkit AP Biology Fall The Scissors: Restriction Enzymes  Bacteria possess restriction enzymes whose usual function is to cut apart.
Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition – Campbell,
RECOMBINANT DNA DNA THAT CONTAINS DNA SEGMENTS OR GENES FROM DIFFERENT SOURCES. DNA TRANSFERRED FROM ONE PART OF A DNA MOLECULE TO ANOTHER, FROM ONE CHROMOSOME.
15 March 2016 Today’s Title: CW: Introduction to genetic engineering Learning Question: what is genetic engineering?
Introduction DNA technology
Biotechnology & DNA Technology Genetic Engineering Chapter Pgs Objective: I can describe several different types of biotechnology,
CHAPTER 20 BIOTECHNOLOGY. Biotechnology – the manipulation of organisms or their components to make useful products Biotechnology is used in all facets.
Gene Cloning & Creating DNA Libraries. Клонирование генов Что означает термин «клонирование»? Как происходит клонирование генов? Чем это отличается от.
Albia Dugger Miami Dade College Cecie Starr Christine Evers Lisa Starr Chapter 15 Biotechnology (Sections )
Title: Genetic Techniques 1
Introduction to Biotechnology Transformation and more!
Jeopardy Final Jeopardy Gene Cloning Plasmids Ligase PCR $100 $100
Gene Cloning Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Most methods for cloning pieces.
DNA Technology and Genomics
Chapter 7 Recombinant DNA Technology and Genomics
Recombinant DNA (DNA Cloning)
CHAPTER 12 DNA Technology and the Human Genome
Chapter 20: DNA Technology and Genomics
Genetic Engineering Genetic engineering involves manipulating genes for practical purposes Gene cloning leads to the production of multiple identical copies.
Chapter 20 Biotechnology.
Chapter 14 Bioinformatics—the study of a genome
Genetic Engineering Subtitle.
Producing DNA fragments eg for manufacturing insulin
DNA Technology and Genomics
Chapter 20: DNA Technology and Genomics
GENE TECHNOLOGY Chapter 13.
Presentation transcript:

Uses of DNA technology You will need to convince a grant committee to fund further research into your area of application of DNA technology Read your assigned section IN YOUR OWN WORDS, give an argument that includes 3 points that highlight that your field needs more money than any other Identify 2 counterarguments and explain why these may not be valid and you should still receive funding.

One of the key tools in DNA technology is the restriction enzyme

Where do these restriction enzymes come from???? What is their natural function??? How can we use them???

Recombinant DNA DNA from 2 sources combined Can be used to clone genes Used to produce a particular protein

Separate from main chromosome E. coli bacterium Plasmid Cell with DNA containing gene of interest 1 2 Isolate plasmid Isolate DNA Bacterial chromosome DNA Gene of interest A plasmid is a small circular piece of DNA found in some bacterial cells Separate from main chromosome May have genes that give the bacteria an advantage in certain circumstances Bacteria can take up plasmids from their environment Figure 12.1 An overview of gene cloning.

3 4 Cut cell’s DNA with same enzyme Gene of interest E. coli bacterium Plasmid Cell with DNA containing gene of interest 1 Isolate plasmid Bacterial chromosome 2 Isolate DNA DNA Gene of interest 3 4 Cut plasmid with enzyme Cut cell’s DNA with same enzyme Gene of interest Figure 12.1 An overview of gene cloning.

Combine targeted fragment and plasmid DNA E. coli bacterium Plasmid Cell with DNA containing gene of interest Isolate plasmid Bacterial chromosome 1 2 Isolate DNA 3 Cut plasmid with enzyme DNA Gene of interest 4 Cut cell’s DNA with same enzyme Gene of interest 5 Combine targeted fragment and plasmid DNA Figure 12.1 An overview of gene cloning.

Combine targeted fragment and plasmid DNA E. coli bacterium Plasmid Cell with DNA containing gene of interest 1 Isolate plasmid Bacterial chromosome 2 Isolate DNA 3 Cut plasmid with enzyme DNA Gene of interest 4 Cut cell’s DNA with same enzyme Gene of interest 5 Combine targeted fragment and plasmid DNA Figure 12.1 An overview of gene cloning. 6 Add DNA ligase, which closes the circle with covalent bonds Recombinant DNA plasmid Gene of interest

Put plasmid into bacterium Recombinant DNA plasmid Gene of interest Recombinant DNA plasmid Gene of interest Put plasmid into bacterium 7 Recombinant bacterium Figure 12.1 An overview of gene cloning.

Recombinant DNA plasmid Gene of interest Put plasmid into bacterium Recombinant DNA plasmid Gene of interest 7 Put plasmid into bacterium by transformation Recombinant bacterium Figure 12.1 An overview of gene cloning. 8 Allow bacterium to reproduce Clone of cells

Examples of gene use Genes may be inserted into other organisms Examples of gene use Genes may be inserted into other organisms Recombinant DNA plasmid Gene of interest 9 Genes or proteins are isolated from the cloned bacterium 7 Put plasmid into bacterium by transformation Recombinant bacterium Harvested proteins may be used directly Figure 12.1 An overview of gene cloning. 8 Allow bacterium to reproduce Clone of cells Examples of protein use

How is this recombinant DNA made? Important to use the same restriction enzyme to cut each source of DNA This allows complementary sticky ends to be created that can later base-pair to combine the DNA

Restriction enzyme recognition sequence DNA 1 Restriction enzyme cuts the DNA into fragments 2 Sticky end Figure 12.2 Creating recombinant DNA using a restriction enzyme and DNA ligase. This figure shows the production of recombinant DNA, using a restriction enzyme to produce complementary sticky ends and DNA ligase to seal the gaps when sticky ends associate with each other.

Restriction enzyme recognition sequence DNA 1 Restriction enzyme cuts the DNA into fragments 2 Sticky end Addition of a DNA fragment from another source 3 Figure 12.2 Creating recombinant DNA using a restriction enzyme and DNA ligase. This figure shows the production of recombinant DNA, using a restriction enzyme to produce complementary sticky ends and DNA ligase to seal the gaps when sticky ends associate with each other.

Restriction enzyme recognition sequence DNA 1 Restriction enzyme cuts the DNA into fragments 2 Sticky end Addition of a DNA fragment from another source 3 Two (or more) fragments stick together by base-pairing Figure 12.2 Creating recombinant DNA using a restriction enzyme and DNA ligase. This figure shows the production of recombinant DNA, using a restriction enzyme to produce complementary sticky ends and DNA ligase to seal the gaps when sticky ends associate with each other. 4

Restriction enzyme recognition sequence DNA 1 Restriction enzyme cuts the DNA into fragments 2 Sticky end Addition of a DNA fragment from another source 3 Two (or more) fragments stick together by base-pairing Figure 12.2 Creating recombinant DNA using a restriction enzyme and DNA ligase. This figure shows the production of recombinant DNA, using a restriction enzyme to produce complementary sticky ends and DNA ligase to seal the gaps when sticky ends associate with each other. 4 DNA ligase pastes the strands Recombinant DNA molecule 5

Steps in cloning a gene Plasmid DNA is isolated Plasmid DNA is isolated DNA containing the gene of interest is isolated Plasmid DNA is treated with restriction enzyme that cuts in one place, opening the circle DNA with the target gene is treated with the same enzyme and many fragments are produced Plasmid and target DNA are mixed and associate with each other At step 6, there are actually three types of products that include plasmid DNA: (1) The ends of the plasmid can rejoin so that its original sequence is restored. (2) A recombinant DNA molecule can be formed containing part or all of the gene of interest. (3) Recombinant DNA molecules form that contain sequences unrelated to the gene of interest, representing the largest percentage of recombinant molecules. This mixture of products is typically used to transform bacteria under conditions where each cell is likely to take up only one plasmid. The cells are grown to form colonies, and properties of the plasmid and target DNA are used to detect the colony containing the recombinant plasmid carrying the gene of interest. Plasmids usually contain marker genes whose products indicate the presence of the plasmid within a bacterial host. A common approach is to use a plasmid with two markers, genes whose products indicate the presence of the plasmid within a bacterial cell. The site at which the plasmid is cut to add the target DNA is within one of the marker genes. Bacterial cells that show the action of both marker genes are not carrying target DNA and can be eliminated from the population. Bacterial cells expressing only the intact marker gene carry a recombinant plasmid. If the whole genome from the target organism is represented, this collection of clones is called a gene library (see Module 12.3). DNA from cells in this library can be tested for hybridization to a probe (see Module 12.5), to identify the cell carrying the gene of interest. Student Misconceptions and Concerns 1. Student comprehension of restriction enzymes, nucleic acid probes, and many other aspects of recombinant DNA techniques depends upon a comfortable understanding of basic molecular genetics. Consider addressing Chapter 12 after an exam that covers the content in Chapters 10 and 11. 2. Students might bring some awareness and/or concerns about biotechnology to the classroom, for example, in their reactions to the controversies regarding genetically modified (GM) foods. This experience can be used to generate class interest and to highlight the importance of good information when making judgments. Consider starting class with a headline addressing one of these issues. Teaching Tips 1. Figure 12.1 is a synthesis of the techniques discussed in further detail in Modules 12.2–12.5. Figure 12.1 is therefore an important integrative piece that lays the foundation of most of the biotechnology discussion. Referring to this figure in class helps students relate the text to your lecture. 2. The general genetic engineering challenge discussed in Module 12.1 begins with the need to insert a gene of choice into a plasmid. This process is very similar to film or video editing. What do we need to do to insert a minute of one film into another? We will need techniques to cut and remove the minute of film and a way to cut the new film apart and insert the new minute. In general, this is also like removing one boxcar from one train, and transferring the boxcar to another train. Students can become confused by the details of gene cloning through misunderstanding this basic relationship. Copyright © 2009 Pearson Education, Inc.

Steps in cloning a gene Recombinant DNA molecules are produced when DNA ligase joins plasmid and target segments together The recombinant DNA is taken up by a bacterial cell The bacterial cell reproduces to form a clone of cells At step 6, there are actually three types of products that include plasmid DNA: (1) The ends of the plasmid can rejoin so that its original sequence is restored. (2) A recombinant DNA molecule can be formed containing part or all of the gene of interest. (3) Recombinant DNA molecules form that contain sequences unrelated to the gene of interest, representing the largest percentage of recombinant molecules. This mixture of products is typically used to transform bacteria under conditions where each cell is likely to take up only one plasmid. The cells are grown to form colonies, and properties of the plasmid and target DNA are used to detect the colony containing the recombinant plasmid carrying the gene of interest. Plasmids usually contain marker genes whose products indicate the presence of the plasmid within a bacterial host. A common approach is to use a plasmid with two markers, genes whose products indicate the presence of the plasmid within a bacterial cell. The site at which the plasmid is cut to add the target DNA is within one of the marker genes. Bacterial cells that show the action of both marker genes are not carrying target DNA and can be eliminated from the population. Bacterial cells expressing only the intact marker gene carry a recombinant plasmid. If the whole genome from the target organism is represented, this collection of clones is called a gene library (see Module 12.3). DNA from cells in this library can be tested for hybridization to a probe (see Module 12.5), to identify the cell carrying the gene of interest. Student Misconceptions and Concerns 1. Student comprehension of restriction enzymes, nucleic acid probes, and many other aspects of recombinant DNA techniques depends upon a comfortable understanding of basic molecular genetics. Consider addressing Chapter 12 after an exam that covers the content in Chapters 10 and 11. 2. Students might bring some awareness and/or concerns about biotechnology to the classroom, for example, in their reactions to the controversies regarding genetically modified (GM) foods. This experience can be used to generate class interest and to highlight the importance of good information when making judgments. Consider starting class with a headline addressing one of these issues. Teaching Tips 1. Figure 12.1 is a synthesis of the techniques discussed in further detail in Modules 12.2–12.5. Figure 12.1 is therefore an important integrative piece that lays the foundation of most of the biotechnology discussion. Referring to this figure in class helps students relate the text to your lecture. 2. The general genetic engineering challenge discussed in Module 12.1 begins with the need to insert a gene of choice into a plasmid. This process is very similar to film or video editing. What do we need to do to insert a minute of one film into another? We will need techniques to cut and remove the minute of film and a way to cut the new film apart and insert the new minute. In general, this is also like removing one boxcar from one train, and transferring the boxcar to another train. Students can become confused by the details of gene cloning through misunderstanding this basic relationship. Copyright © 2009 Pearson Education, Inc.

Use restriction enzymes to break DNA into manageable sized pieces that we can separate

What can we tell from this? It can be used to compare the DNA from different organisms Used to detect disease alleles Used to “match” DNA samples Determine parentage Crime scene forensics

Detecting disease alleles

Problem: if we’re trying to get a bacterium (prokaryote) to make our proteins, they don’t have introns… so, they can’t remove them Solution: Use reverse transcriptase (found in retroviruses) to make DNA from mature mRNA

PCR is used to amplify DNA sequences http://learn.genetics.utah.edu/content/labs/pcr/ Mix ingredients in a thermocycler What do you need to make lots of copies of DNA? From one target DNA sequence, 30 cycles of PCR will produce over 1 million copies. The use of primers is related to the native activity of DNA polymerase. To synthesize a DNA strand, DNA polymerase adds nucleotides to the 3′ end of a short nucleotide strand bound to the template. In the cell, primers are composed of RNA, synthesized by an enzyme called primase. These RNA segments are later removed from the DNA product. In PCR, synthetically produced DNA primers serve as the starting point for the polymerase. The heat-stable Taq polymerase was isolated from Thermus aquaticus, a bacterium found in hot springs. The enzyme can withstand heating to 94oC and synthesize DNA at 72oC during PCR. This is a helpful illustration of the effect of natural selection in favoring a form of the enzyme that would not denature with the high temperatures of the bacterium’s environment. Student Misconceptions and Concerns 1. Television programs might lead some students to expect DNA profiling to be quick and easy. Ask students to consider why DNA profiling actually takes many days or weeks to complete. 2. Students might expect DNA profiling for criminal investigations to involve an analysis of the entire human genome. Consider explaining why such an analysis is unrealistic and unnecessary. Modules 12.12–12.16 describe methods used to describe specific portions of the genome of particular interest. Teaching Tips 1. In PCR, the product becomes another master copy. Imagine that while you are photocopying, every copy is used as a master at another copy machine. This would require many copy machines. However, it would be very productive! Copyright © 2009 Pearson Education, Inc.

Figure 12.12 DNA amplification by PCR. Cycle 1 yields 2 molecules Cycle 2 yields 4 molecules Cycle 3 yields 8 molecules Genomic DNA 3 5 3 5 3 5 5 1 Heat to separate DNA strands 2 Cool to allow primers to form hydrogen bonds with ends of target sequences 3 DNA polymerase adds nucleotides to the 3 end of each primer 3 5 5 3 Target sequence 5 5 3 5 3 5 3 Figure 12.12 DNA amplification by PCR. This figure shows several cycles of the PCR process, emphasizing that the number of templates doubles with each cycle. Primer New DNA

Cycle 1 yields 2 molecules Genomic DNA 3 5 3 5 3 5 5 DNA Cycle 1 yields 2 molecules Genomic DNA 3 5 3 5 3 5 5 DNA polymerase adds nucleotides to the 3 end of each primer 1 Heat to separate DNA strands 2 Cool to allow primers to form hydrogen bonds with ends of target sequences 3 3 5 5 3 Target sequence 5 Figure 12.12 DNA amplification by PCR. This figure shows several cycles of the PCR process, emphasizing that the number of templates doubles with each cycle. 5 3 5 3 5 3 Primer New DNA

Cycle 2 yields 4 molecules Cycle 3 yields 8 molecules Cycle 2 yields 4 molecules Cycle 3 yields 8 molecules Figure 12.12 DNA amplification by PCR. This figure shows several cycles of the PCR process, emphasizing that the number of templates doubles with each cycle.