Cinchona Alkaloids : Efficient Tunable Organocatalyts in Asymmetric Synthesis Antonin Clemenceau 04.06.15.

Slides:



Advertisements
Similar presentations
Hydrogen-Bond Catalysis
Advertisements

Lewis Basic Chiral Phosphine Organocatalysis John Feltenberger Hsung Group University of Wisconsin – Madison January 29, 2009.
CDC Reaction Involving α -C-H Bonds of Nitrogen in Amines 李南
1 Chiral Anion-Mediated Asymmetric Ion Pairing Chemistry Reporter: Zhi-Yong Han
Rhodium Catalyzed Direct C-H Functionalization 陈殿峰
1 D. A. Evans’ Asymmetric Synthesis — From 80’s Chiral Auxiliary to 90’s Copper Complexes and Their Applications in Total Synthesis Supervisor: Professor.
Center for Catalysis Research and Innovation
Catalytic Cross-coupling Reactions with Unactivated Alkyl Electrophiles and Alkyl Nucleophiles Heng Su 04/11/2008 Department of Chemistry Brandeis University.
Reporter: Yu Ting Huang Advising Prof: Ru Jong Jeng 1.
Masakatsu Shibasaki was born in 1947 in Japan. In 1974 he received his Ph. D. Degree from the University of Tokyo. After then he did postdoctoral studies.
Cyclic Aminal of TsDPEN: Synthesis and Use as Asymmetric Organocatalysts Rina Soni, Silvia Gosiewska, Guy Clarkson, Martin Wills * Department of Chemistry,
1 CH402 Asymmetric catalytic reactions Prof M. Wills Think about chiral centres. How would you make these products? Think about how you would make them.
Recent Development for Stereoselective Synthesis of 1,3-Polyol Ye Zhu Prof. Burgess’ Group Aug. 19, 2010.
Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills
Enantioselective Total Synthesis of Ecteinascidin 743
Alkylation by Asymmetric Phase- Transfer Catalysis 张文全.
The application of alkaline metal(Ca, Sr, Ba) complex as catalyst in organic chemistry 张文全 1.
Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.
Cyclobutanes in Catalysis YuLiu Du ▶ Introduction ▶ Ring Expansion through 1,2-Carbon shift ▶ Metal-Catalyzed Activation of C-C Bond ▶ Asymmetric.
Introduction Asymmetric reduction of C=N bonds represents a powerful method for the asymmetric formation of chiral amines. 1 Whilst many methods exist.
Organo-metal cooperative catalysis
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
Career-in-review Keiji Maruoka Reporter: Li Chen Supervisor: Prof. David Zhigang Wang
THIOUREA-CATALYSED RING OPENING OF EPISULFONIUM IONS WITH INDOLE DERIVATIVES BY MEANS OF STABILIZING NON-COVALENT INTERACTIONS Nature Chem. 2012, 4,
N-Heterocyclic carbenes : A powerful tool in organic synthesis Thomas B UYCK PhD Student in Prof. Zhu Group, LSPN, EPFL Frontiers in Chemical Synthesis.
Enantioselective Total Synthesis of (+)-Gliocladin C and (+)-Gliocladine C 石枫 Larry E. Overman, Org. Lett., 2007, 9, 339 Larry E. Overman, J.
Chiral Concave N-Heterocyclic Carbenes 3 rd International Summer School “Supramolecular Systems in Chemistry and Biology“ Tim Reimers Kiel, GER.
Carbon-Carbon Bond Forming Reactions I. Substitution Reaction II. Addition Reaction.
1 CATALYTIC ASYMMETRIC NOZAKI- HIYAMA-KISHI REACTION: ROLE OF ORGANOCHROMIUM COMPOUNDS AND NOVEL SALEN LIGANDS A RKAJYOTI C HAKRABARTY Prof. Uday Maitra’s.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills Reorganised to highlight key areas to learn and understand. You are aware of the importance.
Synthesis and Biological Activity of Platensimycin
High-Oxidation-State Palladium Catalysis 报告人:刘槟 2010 年 10 月 23 日.
Catalytic Asymmetric Total Syntheses of Quinine and Quinidine Izzat T. Raheem, Steven N. Goodman, and Eric N. Jacobsen J. Am. Chem. Soc. 2004, 126, 3,
Synthesis, Application and Structural Analysis
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills You are aware of the importance of chirality. This course will focus on asymmetric.
IMPROVED RUTHENIUM CATALYSTS FOR Z-SELECTIVE OLEFIN METATHESIS Benjamin K. Keitz, Koji Endo, Paresma R. Patel, Myles B. Herbert, and Robert H. Grubbs J.
Ye Zhu 09/02/10 Burgess’s Group Meeting Chiral Ligands On A Spiro Scaffold for Transition-Metal- Catalyzed Asymmetric Reactions Work by Prof. Zhou Qi-Lin.
Organocatalysis: Chiral Amines in Asymmetric Synthesis
1 Chiral Phosphoric Acids-Catalyzed Multi-Component Reactions for Synthesis of Structurally Diverse Nitrogenous Compounds Feng Shi Dec. 18th, 2010.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and Catalytic Mechanism Reporter: Song Feifei Supervisor: Prof. Yong Huang
Organic Pedagogical Electronic Network Properties of Hydrogen Bonding Created by Max Taggart Edited by Margaret Hilton Honors Organic Chemistry Chem 2321.
The Work Of Pr Karl A. Scheidt Group Department of Chemistry, Northwestern UniVersity, Evanston.
Redox Neutral Reactions Wang Chao Redox Economy and Redox Neutral Reactions: Angew. Chem. Int. Ed. 2009, 48, 2854 – 2867.
金属催化的氧化反应 CYP 450TauD Acc. Chem. Res. 2007, 40, 522–531.
Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-S.; Shi,
Recycling the Waste: The Development of a Catalytic Wittig Reaction Angew. Chem. Int. Ed. 2009, 48, 6836 –6839.
Reporter: Yang Chao Supervisor: Prof. Yong Huang The Transformation of α ‑ Diazocarbonyl Compounds.
Nicolas Gaeng Group seminar – LSPN – 30/04/15. Structures with multiple rings connected through one atom Nomenclature proposed by Adolf Baeyer in 1900.
Cooperative catalysis between metals and organocatalysis
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Cinchona Alkaloids : Efficient Bifunctional Organocatalyts in Asymmetric Synthesis Antonin Clemenceau Frontiers in Chemical Synthesis PhD in J. Zhu Group.
Selected examples of Domino Reactions in Total Synthesis Dagoneau Dylan Zhu Group Frontiers in Chemical Synthesis May 22 th, 2014.
Rhodium-catalyzed hydroamination of olefin Baihua YE 06/06/2011.
Methods for α-Sialylation Caroline Braun Townsend Group Meeting May 11, 2016.
Photocatalysis based on TiO2
Catalytic Enantioselective Fluorination
Area of the Interest Development of new organocatalytic methodologies
Presented by Arianne Hunter Sharma Lab Literature Meetings
Visible light photoredox-controlled reactions of N-radicals
Recent Development in Isocyanide-Based
Transition Metal Catalyzed Amide Bond Formation
Superbisor: Yong Huang
Enantioselective Rh-catalyzed Aldehyde C-H Activation
Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems
Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
Copper Catalyzed C-N Bond Formation Using O-Acyl Hydroxylamine
1. Palladium Catalyzed Organic Transformations
Presentation transcript:

Cinchona Alkaloids : Efficient Tunable Organocatalyts in Asymmetric Synthesis Antonin Clemenceau

Plan : I- Organocatalysis: Concepts and Principle II- Cinchona Alkaloids A- Presentation B- History C- Other Potential Examples III- Conclusion 3

Introduction Concept borns in the late 1990s Before only enzymes and metal-catalyst were used for asymmetric catalysis Another powerful tool for the Modern Organic Chemistry Explosion of this field during this century Organocatalysis 4

Organocatalysis: Concepts and principle Principle Definition : The use of small organic molecules to catalyse asymmetric transformation First example of asymmetric organic synthesis was reported with proline catalyst in 1971 by two industrial research groups Advantage: - Non-toxic, environmentally friendly - Low cost - Robust - Metal-free reaction Creation of a new C-C or C-heteroatom bond controlled by the organocatalyst ===> Induction of chirality 5

Organocalysts 6

Nomenclature Cinchona Alkaloids Quinine isolated by Pelletier in 1820 Quinine and derivatives were recognized as antimalarial agent First Total Synthesis in 1944 by Woodward and Doering A dimer derivative ((DHQD) 2 -PHAL) is used as chiral ligand in the Sharpless asymmetric dihydroxylation. Considered as pseudo-enantiomers because -The stereogenic centers (C8, C9) have the opposite absolute configuration -The centers in the quinuclidine fragment (C3, C4) are identical Ref: R. B. Woodward and W. E. Doering J. Am. Chem. Soc., 1944, 66, T. Marcelli, J. H. van Maarseveen, H. Hiemstra Angew. Chem. Int. Ed. 2006, 45, 7496 – 7504 B. Sharpless et al. J. Org. Chem. 1992, 57, Quinquina Tree 7

Cinchona Alkaloids Bifunctional Catalyst Ref: A. G. Doyle, E. N. Jacobsen Chem. Rev. 2007, 107, 5713 – 5743 J. Alemán, A. Parra, H. Jiang, K. A. Jørgensen Chem. Eur. J. 2011, 17, 6890 – 6899 J. -W. Xie, W. Chem, R. Li, M. Zeng, W. Du, L. Yue, Y. -C. Chen, Y. Wu, J. Zhu, J. -G. Deng Angew. Chem. Int. Ed. 2007, 46, 389 –392 Easily tunable moiety 8

1981: Quinine Ref: H. Hiemstra, H. Wynberg J. Am. Chem. Soc. 1981, 103, 417. Enantioselective conjugate addition of aromatic thiols to conjugated cycloalkenones First example of Cinchona Alkaloid as Organocatalyst 9

1981: Suggested Mechanism Ref: H. Hiemstra, H. Wynberg J. Am. Chem. Soc. 1981, 103,

1999 :  -Isocupreine Ref: Y. Iwabuchi, M. Nakatani, N. Yokoyama, S. Hatakeyama J. Am. Chem. Soc. 1999, 121,  -Isocupreine Cagelike structure Conformationally rigid No pseudoenantiomer of the  -isocupreine easily accessible Asymmetric Baylis−Hillman Reaction 11

1999 : Proposed Reaction Mechanism Ref: Y. Iwabuchi, M. Nakatani, N. Yokoyama, S. Hatakeyama J. Am. Chem. Soc. 1999, 121, See also: G. Masson, J. Zhu, C. Housseman Angew. Chem. Int. Ed. 2007, 46, 4614 – 4628 Syn diastereomers are produced from the aldol reaction Steric constraints of C unfavoured the  elimination 12

2004 : Cupreine and cupreidine Ref: H. Li, Y. Wang, L. Tang, L. Deng J. Am. Chem. Soc. 2004, 126, Enantioselective Conjugate Addition of Malonate and  -Ketoester to Nitroalkane 13

2005 : Thiourea Cinchona Alkaloids Ref: J. Ye, D. J. Dixon, P. S. Hynes Chem. Commun. 2005,4481 S. H. McCooey, S. J. Connon Angew. Chem. Int. Ed. 2005, 44, 6367 B. Vakulya, S. Varga, A. Csámpai, T. Soós Org. Lett., 2005, 7, M. S. Taylor, E. N. Jacobsen Angew. Chem. Int. Ed. 2006, 45, 1520 – 1543 Simultaneous donation of two hydrogens Electrophile activation as enzymes system Strong and directional H-bonds formation 14

2005 : Thiourea Cinchona Alkaloids Ref: J. Ye, D. J. Dixon, P. S. Hynes Chem. Commun. 2005, S. H. McCooey, S. J. Connon Angew. Chem. Int. Ed. 2005, 44, 6367 B. Vakulya, S. Varga, A. Csámpai, T. Soós Org. Lett., 2005, 7, Enantioselective Conjugate Addition 15

2006 : C6’- Thiourea Cinchona Alkaloids Ref: T. Marcelli, R. N. S. van der Haas, J. H. van Maarseveen, H. Hiemstra Angew. Chem. Int. Ed. 2006, 45, 929 –931 Asymmetric Henry reaction Switch of the H-bond donor C9 to C6’ 16

2007 : Amino Cinchona Alkaloids Ref: P. Melchiorre Angew. Chem. Int. Ed. 2012, 51, 9748 – 9770 L. Jiang, Y. -C. Chen Catal. Sci. Technol. 2011,1, S. Bertelsen, K. A. Jørgensen Chem. Soc. Rev., 2009, 38, 2178–2189 Activation mode 17

2007 : Amino Cinchona Alkaloids Ref: P. Melchiorre Angew. Chem. Int. Ed. 2012, 51, 9748 – 9770 L. Jiang, Y. -C. Chen Catal. Sci. Technol. 2011,1, S. Bertelsen, K. A. Jørgensen Chem. Soc. Rev., 2009, 38, 2178–2189 Activation mode: Secondary amine vs Primary amine 18

Ref: J.-W. Xie, W. Chen, R. Li, M. Zeng, W. Du, L. Yue, Y. –C. Chen, Y. Wu, J. Zhu, J. –G. Deng Angew. Chem. Int. Ed. 2007, 46, 389 –392 W. Chen, W. Du, Y. –Z. Duan, Y. Wu, S.-Y. Yang, Y.- C. Chen Angew. Chem. Int. Ed. 2007, 46, 7667 –7670 The same year, 2 other groups published organocatalytic reaction with Amino Cinchona Alkaloids: S. H. McCooey, S. J. Connon Org. Lett. 2007, 9, 599 – 602. G. Bartoli, M. Bosco, A. Carlone, F. Pesciaioli, L. Sambri, P. Melchiorre Org. Lett. 2007, 9, 1403 – : Amino Cinchona Alkaloids 19

Ref: J. P. Malerich, K. Hagihara, V. H. Rawal, J. Am. Chem. Soc. 2008, 130, J. Alemán, A. Parra, H. Jiang, K. A. Jørgensen Chem. Eur. J. 2011, 17, 6890 – : Squaramide Cinchona Alkaloids Difference with thiourea: Asymmetric conjugate addition of dicarbonyle to nitroalkene 20

Ref: F. Sladojevich, A. Trabocchi, A. Guarna, D. J. Dixon J. Am. Chem. Soc. 2011, 133,1710 –1713. P. Shao, J. Liao, Y. A. Ho, Y. Zhao Angew.Chem. Int. Ed. 2014, 53,5435 –5439. I. Ortín, D. J. Dixon Angew.Chem. Int. Ed. 2014, 53,3462 –3465. R. De la Campa, I. Ortín, D. J. Dixon Angew.Chem. Int.Ed. 2015, 54,4895 – : Cinchona-Derived Amino Phosphine precatalyst Aldol (or Mannich) reaction 21

Other potential application Over the years simple asymmetric reactions were performs with Cinchona Alkaloids How has been used this organocatalyst scaffold in challenging transformations? 22

Other Potential Application Ref.: Y. Wang, H. Li, Y. -Q. Wang, Y. Lui, B. M. Foxman, L. Deng J. Am. Chem. Soc. 2007, 129, Asymmetric Diels−Alder Reactions 23

Other Potential Application Asymmetric Diels−Alder Reactions Ref.: Y. Wang, H. Li, Y. -Q. Wang, Y. Lui, B. M. Foxman, L. Deng J. Am. Chem. Soc. 2007, 129,

Ref: P. Kwiatkowski, T. D. Beeson, J. C. Conrad, D. W. C. MacMillan J. Am. Chem. Soc. 2011, 133, 1738–1741 Other Potential Application Enantioselective α-Fluorination First highly enantioselective fluoration using Organocatalysis Cinchona Alkaloids give the best result Enamine activation mode 25

Other Potential Application Ref: F. Manoni, S. J. Connon Angew. Chem. Int. Ed. 2014, 53, 2628 –2632 Asymmetric Tamura cycloadditions 26

Other Potential Application Ref: X. Yin, Y. Zheng, X. Feng, K. Jiang, X. -Z. Wei, N. Gao, Y. –C. Chen Angew. Chem. Int. Ed. 2014, 53, Asymmetric [5+3] formal cycloadditions 27

Ref: P. Jakubec, D. M. Cockfield, D. J. Dixon J. Am. Chem. Soc. 2009, 131, – P. Chen, X. Bao, L.-F. Zhang, M. Ding, X.-J. Han, J. Li, G.-B. Zhang, Y.-Q. Tu, C.-A. Fan Angew. Chem. Int. Ed. 2011, 50, Other Potential Application …Toward Total Synthesis 28

Ref: T. Buyck, Q. Wang, J. Zhu Angew. Chem. Int. Ed. 2013, 52, – Other Potential Application …Toward Total Synthesis 29

Conclusion -Easily avalaible & tunable -Various way of substrate activation -Enantioselective control -Catalytic process -Environmentally friendly Widely used in organocatalysis … Still lot of thing can be done Dual and cooporatives catalysis can be an issue

Thanks for your attention

Suggested Mechanism Asymmetric Tamura cycloadditions Ref: F. Manoni, S. J. Connon Angew. Chem. Int. Ed. 2014, 53, 2628 –2632

Suggested Mechanism Ref: X. Yin, Y. Zheng, X. Feng, K. Jiang, X. -Z. Wei, N. Gao, Y. –C. Chen Angew. Chem. Int. Ed. 2014, 53, Asymmetric [5+3] formal cycloadditions