J.Zhang a, S.H.Cho b, and J.M.Seo b a Department of Physics, Yunnan University, Kunming 650091,P.R.China b Department of Physics, Chonbuk National University,

Slides:



Advertisements
Similar presentations
Scanning tunnelling spectroscopy
Advertisements

Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
University of Illinois at Urbana-Champaign Daniel Go, Alfonso Reina-Cecco, Benjamin Cho Simulation of Silicon Twist Wafer Bonding MATSE 385 Final Project.
Quasi-vdW epitaxy of GaAs on Si Darshana Wickramaratne 1, Y. Alaskar 2,3, S. Arafin 2, A. G. Norman 4, Jin Zou 5, Z. Zhang 5, K.L Wang 2, R. K. Lake 1.
Surface Structure II crystal structure of elements Bravais lattices, Miller indices, Weber symbols close-packing, fcc, hcp, bcc, stacking faults low-index.
Silicon Nanowire based Solar Cells
An STM investigation of the interaction and ordering of pentacene molecules on the Ag/Si(111)-(√3x√3)R30° surface Ph. Guaino et. al (NCSR), Dublin City.
Overview of Nanofabrication Techniques Experimental Methods Club Monday, July 7, 2014 Evan Miyazono.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Quantum Transport in Ultra-scaled.
MORPHOLOGY AND STRAIN-INDUCED DEFECT STRUCTURE OF FE/MO(110) ULTRATHIN FILMS: IMPLICATIONS OF STRAIN FOR MAGNETIC NANOSTRUCTURES I. V. Shvets Physics Department.
Ab Initio Total-Energy Calculations for Extremely Large Systems: Application to the Takayanagi Reconstruction of Si(111) Phys. Rev. Lett., Vol. 68, Number.
One-dimensional Ostwald Ripening on Island Growth An-Li Chin ( 秦安立 ) Department of Physics National Chung Cheng University Chia-Yi 621 Taiwan, ROC Prof.
Auger Electron Spectroscopy of In 2 O on GaAs(001)-(2x4) As, Ga In O Ga As In:O = 2:1 In 2 O 3(s)  In 2 O (g) +O 2(g) Scanning Tunneling Microscopy and.
Tanaka Lab. Yasushi Fujiwara Three dimensional patterned MgO substrates ~ fabrication of FZO nanowire structure~
Observation of magnetic domains in LSMO thin films by XMCD-PEEM M. Oshima A, T. Taniuchi A, H. Kumigashira A, H. Yokoya B, T. Wakita C, H. Akinaga D, M.
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Giant magneto resistivity in Fe 3-x Zn x O 4 nanowire structures 産研 田中研 尾野 篤志.
X. Low energy electron diffraction (LEED)
2011/12/14 2nd term M1 colloquium Creation of huge metal-insulator domain and its electrical conduction property in VO 2 thin film on TiO 2 (001) substrate.
PC4259 Chapter 5 Surface Processes in Materials Growth & Processing Homogeneous nucleation: solid (or liquid) clusters nucleated in a supersaturated vapor.
In this study, Ge-rich a-SiGe films have been fabricated by RF magnetron co-sputtering at two different base-pressures. As-sputtered SiGe thin-films were.
Stanford Synchrotron Radiation Laboratory More Thin Film X-ray Scattering: Polycrystalline Films Mike Toney, SSRL 1.Introduction (real space – reciprocal.
Effects of supersaturation on the crystal structure of gold seeded III–V nanowires 1 Jonas Johansson, 2 Lisa S. Karlsson, 1 Kimberly A. Dick, 1 Jessica.
II. Structure of Surfaces
Nanowires and Nanorings at the Atomic Level Midori Kawamura, Neelima Paul, Vasily Cherepanov, and Bert Voigtländer Institut für Schichten und Grenzflächen.
Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.
Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志.
EEW508 Structure of Surfaces Surface structure Rice terrace.
Measurement of nano-scale physical characteristics in VO 2 nano-wires by using Scanning Probe Microscope (SPM) Tanaka lab. Kotaro Sakai a VO 2 nano-wire.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
National Science Foundation Goal: Development of new catalysts, anode and cathode materials is critical for advancing fuel cell technology. An alternative.
Updates of Iowa State University S. Dumpala, S. Broderick and K. Rajan Oct-2, 2013.
Nanostructured Thermoelectric Materials
Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,
National Science Foundation X-ray vision of nano-materials Eric E Fullerton, University of California-San Diego, DMR Researcher at University of.
Universality and criticality of two-particle correlated evolution model S. Y. Yoon and Yup Kim Department of Physics, Kyung-Hee University Satellite Meeting.
Photo physics and photo chemistry of ice films on graphite Department of Applied Physics Chalmers and Göteborg University Dinko Chakarov Johan Bergeld.
Nanoscale imaging and control of resistance switching in VO 2 at room temperature Jeehoon Kim, Changhyun Ko, Alex Frenzel, Shriram Ramanathan, and Jennifer.
Growth evolution, adatom condensation, and island sizes in InGaAs/GaAs (001) R. Leon *, J. Wellman *, X. Z. Liao **, and J. Zou ** * Jet Propulsion Laboratory,
Meta-stable Sites in Amorphous Carbon Generated by Rapid Quenching of Liquid Diamond Seung-Hyeob Lee, Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee, and.
Lecture 6: Microscopy II PHYS 430/603 material Laszlo Takacs UMBC Department of Physics.
In-situ Scanning Tunneling Microscopy Study of Bismuth Electrodeposition on Au(100) and Au(111) S.H. Zheng a, C.A. Jeffrey a,b, D.A. Harrington b E. Bohannan.
Radiation effects in nanostructures: Comparison of proton irradiation induced changes on Quantum Dots and Quantum Wells.* R. Leon and G. M. Swift Jet Propulsion.
Christian Ratsch, UCLACSCAMM, October 27, 2010 Strain Dependence of Microscopic Parameters and its Effects on Ordering during Epitaxial Growth Christian.
1 ADC 2003 Nano Ni dot Effect on the structure of tetrahedral amorphous carbon films Churl Seung Lee, Tae Young Kim, Kwang-Ryeol Lee, Ki Hyun Yoon* Future.
Self-assembled molecular array in methylamine dissociation on Si(100), J.-H. Cho, L. Kleinman, U. of Texas, Phys. Rev. B 67, (2003). A candidate.
Molecular and Electronic Devices Based on Novel One-Dimensional Nanopore Arrays NSF NIRT Grant# PIs: Zhi Chen 1, Bruce J. Hinds 1, Vijay Singh.
Nano and Giga Challenges in Microelectronics Symposium and Summer School, Cracow, September 13-17, 2004 Atomic scale observation of interface defect formation.
PHYSICAL REVIEW B 67, (2003) Model for C defect on Si(100) : The dissociative adsorption of a single water molecule on two adjacent dimers M. Z.
A. Orozco, E. Kwan, A. Dhirani Department of Chemistry, University of Toronto SCANNING TUNNELING MICROSCOPY: A NEW CHM 326 LAB.
Scanning Tunneling Microscopy Studies of Single-Crystal Niobium Oxidation Natalie A. Kautz, Yichen Yu, Kevin D. Gibson.
Mg Films Grown by Pulsed Laser Deposition as Photocathodes: QE and surface adsorbates L. Cultrera INFN – National Laboratories of Frascati.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
. Simulated image of Ga Tetramers using SIESTA Experimental STM images of 4x3 reconstruction. PECASE: Growth and Analysis of Novel Nitride Semiconductor.
Direct Observation of Polariton Waveguide in ZnO nanowire at Room Temperature motivation abstract We report the direct experimental evidence of polariton.
MIT Microstructural Evolution in Materials 12: Nucleation
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Surfaces and Multilayers &
Corneliu Buda,1 Matthew Neurock,1 Cathy Chin2 and Enrique Iglesia2
Multi-scale modeling of the evolution of oxygen phases on Pt surfaces under realistic reactive conditions Aravind Asthagiri, Chemical Engineering Department,
DOE Plasma Science Center Control of Plasma Kinetics
へき開再成長法により作製された(110)GaAs 量子井戸における表面原子ステップの観察
Quantum Mechanical Control of Surface Chemical Reactivity
Edmar A. Soares, Rosa M. C. Marques, Vagner E. de Carvalho, Hans-D
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
Ge nanostressors on silicon-on-insulator (SOI)
Applications in Quantum Computing
Multiscale Modeling and Simulation of Nanoengineering:
2. SEM images of different SiNW structures 3.Results and discussion
Presentation transcript:

J.Zhang a, S.H.Cho b, and J.M.Seo b a Department of Physics, Yunnan University, Kunming ,P.R.China b Department of Physics, Chonbuk National University, Chonju , Korea Growth and disorder of Ag nanowires on Si(5 5 12)-21 surface Growth and disorder of Ag nanowires on Si(5 5 12)-2  1 surface Structure of clean Si(5 5 12)-2  1 Steps and kinks on clean Si(5 5 12)-2  1 Growth of Ag nanowires on Si(5 5 12)-2  1 Contents

Side view of the silicon crystal lattice between the (001) and (111) planes (hhk) degree L(nm) (5 5 12) = (337) x 2 + (225) (7 7 17) = (337) + (225)

Structural model of Si(5 5 12)-2×1 surface [-110] [66-5] (5 5 12) (7 7 17) dimer

STM images of clean Si(5 5 12)-2×1 surface Reconstruction: Cooling down at ~2  C /sec. from 700  C to RT Filled-state STM image: I= 0.6nA, Bias = -2.5V, Rotation= 30  Topography 200Å×200Å [ ] [ ] 2  1 unit cell 0.77×5.35nm Error signal 200Å×200Å [ ] [ ] π -chains Tetramer

3-D STM image of clean Si(5 5 12)-2×1 (5 5 12) = 2×(3 3 7) + (2 2 5) = (3 3 7) + (7 7 17) 200Å×200Å (5 5 12)  -chains tetramers (337) (225) (337)’ extra (337) (7 7 17) adsorbed dimers [ ] [ ]

Steps and kinks on Si(5 5 12)-2×1 surface Error signal: 1000Å × 1000Å Error signal: 350Å × 350Å [ ] [ ] Si(1 1 3) Lower terrace Upper terrace Step A Step B Step A

Wide Si(7 7 17) domain parasitic on Si(5 5 12) surface 500Å  500Å (5 5 12) (7 7 17) step (5 5 12) [66-5] [-110] Lower terrace upper terrace

Topography 100 Å x 100 Å  T D   T Error signal 100 Å x 100 Å  T D   T  T D     T  T D    T File name : HDF File name : HDF Comparison of topography and error signal images of Si(7 7 17)

Double step fabrication of Ag nanowires Ag rows 500Å×500Å [-110] [66-5] Ag rows Si(5 5 12) For lower coverage(<0.1ML) Experimental Ag deposited on Si(5 5 12)-2  1 Anneal(double steps):  C, 10min  C RT, 36min Ag row growth Ag rows grew uniformly Ag row distribution not even Ag induced a new reconstruction Ag rows on Si(5 5 12) : 0.03ML

Comparison of clean Si(7 7 17) and Ag:Si(7 7 17) system Clean Si(7 7 17) Ag : Si(7 7 17) system tetramer rows (7 7 17) (225) (337) (225) (7 7 17) Ag chains 0.1ML 2×2× 3×3× disorder

STS of Ag nanowires on Si(5 5 12)-2×1 surface

Si(111)-7×7 surface measured by STM.

STM image and simulation for Ga 6 /Si(111)-7×7 surface +1.6 eV J.F.Jia, Phys. Rev. Lett.

5000Å X 5000Å 4277Å X 4277Å 5000Å X 5000Å [ ] [ ] [ ] [ ] [ ] Steps on clean Si(5 5 12)-2×1 surface 120º

Steps on clean Si(5 5 12)-2×1 surface 5000ÅX5000Å 12000ÅX12000Å 10000ÅX10000Å a b c  Flashing T max : C  Reconstruction T max : C  Bass pressure:(a)1.1x mb;(b)(c) 2.6x mb

Steps and kinks on clean Si(5 5 12)-2  1 surface

Step flows on clean Si(5 5 12)-2  1 surface

Si(001) 邻晶面上的两种台面和台阶

Kinetics: Layer-by-Layer Growth DiffusionNucleationGrowth - High Flux - Low Temperature - Low Step Density

Kinetics: Step-Flow Growth DiffusionStickingFlow - Low Flux - High Temperature - High Step Density

Step flow: A 2D analog of 3D growth

Breakdown of Step Flow Growth

Summary Nano Scale --- minimizing elastic strain energy self-organization of steps (quantum wires) and islands (quantum dots) Si(5 5 12)-2×1 surface Ag nanowires on Si(5 5 12)-2×1 surface form along tetramer rows where the binding energy is relatively low 1D Ag nanowires with disorder structuers show metal-insulator transition (Anderson effect)