MPI Stuttgart Max-Planck-Institut fuer Festkoerperforschung Stuttgart, Germany R. Sordan, K. Balasubramanian, M. Burghard WP2(A): Single fullerene transistor assisted single spin detection
MPI Stuttgart Method for contacting the molecules Ultra-small sandwich junctions in crossed-wire geometry Schematic device structure: advantage: ferromagnetic metals can be used as contact(s) disadvantages: cross section of junction: ~40 x 40nm 2 dilution of molecules shielding of electric field (back gate) bottom top How to attach the molecules?
MPI Stuttgart Molecule deposition onto bottom nanowire Langmuir-Blodgett (LB) monolayers H2OH2O H2OH2O compression C60 in toluene transfer onto substrate area per C60: ~1nm 2 required area on LB trough: ~100cm 2 ~10 16 molecules (~10µg)
MPI Stuttgart LB monolayers of C60 Horizontally deposited onto Si/SiO 2 wafer low surface pressure high surface pressure 14µm
MPI Stuttgart Molecule deposition onto bottom nanowire Electrochemical Method approach no.1: Pure C60 Pt pseudo- reference electrode Pt counter electrode probe needle electrolyte solution deposition conditions: -0.9V vs. Pt sec + N(CH 2 CH 2 CH 2 CH 3 ) 4 BF 4 - CH 2 Cl 2 TBA-BF 4 :
MPI Stuttgart Electrodeposited C60 molecules major problem: low adhesion of top wire (6 samples tested) continuous films obtained for thickness > 2nm electropolymerisation(?) Height increase ~ 2nm
MPI Stuttgart Electrodeposition of molecules onto bottom nanowire approach no.2: C60 in matrix SH matrix = benzene-1,3-dithiol SS S SS oxidation ( -H +, -e - ) conditions: +0.7V vs. Pt in toluene/acetonitrile ( sec); C60 : matrix = 1 : 10. continuous films for thickness >4nm film structure and extent of C60 inclusion to be determined
MPI Stuttgart electrodeposition Fabrication of crossed-wire junctions 2nd e-beam lithography Bottom wire defined by e-beam lithography, Ti/AuPd (1/12nm) n + -Si SiO 2 (100nm) Top wire, Ti/AuPd (0.5/15nm)
MPI Stuttgart 5 m Crossed-wire junction bottom wire
MPI Stuttgart Electrical behaviour of pure matrix sandwich junctions gap widths: V type I : “ohmic” (thinner films) type II : with gap (thicker films)
MPI Stuttgart I/V characteristics of C60/matrix- sandwich junctions Sample no.1 (of 10) ~0.3V
MPI Stuttgart I/V characteristics of C60/matrix- sandwich junctions Sample no.2 (of 10) ~50mV
MPI Stuttgart Features in the I/V of C60/matrix- junctions C60 in nanogap (1) (1): H. Park et al., Nature 407 (2000), 57. (2): Y. Noguchi et al., Thin Solid Films (2003), meV excitation from nano- mechanical oscillation features with small separation: internal vibrational modes (several 10meV) C60 embedded in polymer film (macroscopic junction area) (2)
MPI Stuttgart Investigation of gate dependence for C60/matrix- sandwich junctions T=2K Sample no.2 (of 10)
MPI Stuttgart Investigation of B field-dependence for C60/matrix-sandwich junctions Sample no.2 (of 10)
MPI Stuttgart Mn 12 -cluster for comparison synthesis electrodeposition: matrix method deposition: self-assembly Spin ground state: S=10 AuPd [Mn 12 O 12 (O 2 CMe) 16 (H 2 O) 4 ] S COO OOC
MPI Stuttgart I/V traces of Mn 12 sandwich junction for increasing B field
MPI Stuttgart Next steps cobalt or dysprosium bottom top Sandwich junctions with ferromagnetic metal (top) contact Incorporation of molecules Top electrode (e.g., Co) AuPd bottom electode effect on features in I/V spin polarised tunneling
MPI Stuttgart Nano-gaps via electromigration-induced breaking of nanowires ion beam etching V 2 O 5 nanowire Ti/AuPd (1/6 nm) layer SiO 2 (100 nm) layer n + -Si substrate nm cross-section of ~100nm 2 (7nm x 15nm) gap size 1nm for breaking at 4K (R RT < M ) after breaking via electro-migration: advantages: allows for single molecule contacts possibly smaller gate shielding disadvantage: possible with ferromagnetic metal wires ?
MPI Stuttgart Electrical behaviour of pure matrix sandwich junctions B = 0 T, 2 T, 5 T, 10 T, -10 T T = 2 K type I - “ohmic”