Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Slides:



Advertisements
Similar presentations
Sputtering Eyal Ginsburg WW46/02.
Advertisements

High resolution morphological and mechanical characterization of Niobium films obtained by MS and Biased MS PVD E. Bemporad, M. Sebastiani, F. Carassiti.
Metallography Lab. 0 Effects of target current on the mechanical properties of Cr-C coatings by using the Unbalanced Magnetron Sputtering Professor : Dr.
Investigation of the Catalytic Activity of Plasma-Treated Fe, Ni, and Co Foil for Water Splitting Nick Lavrov, Olivia Watson.
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
1 Introduction to Plasma Immersion Ion Implantation Technologies Emmanuel Wirth.
Electro-Ceramics Lab. Preparation and electrical properties of (Ba 1-x,Sr x )(Ti 1-y,Zr y )O 3 thin films for application at high density DRAM thin films.
Techniques of Synthesizing Wafer-scale Graphene Zhaofu ZHANG
Nanowire Presentation Alexandra Ford 4/9/08 NSE 203/EE 235.
Metal-free-catalyst for the growth of Single Walled Carbon Nanotubes P. Ashburn, T. Uchino, C.H. de Groot School of Electronics and Computer Science D.C.
Effect of Environmental Gas on the Growth of CNT in Catalystically Pyrolyzing C 2 H 2 Minjae Jung*, Kwang Yong Eun, Y.-J. Baik, K.-R. Lee, J-K. Shin* and.
Alloy Thin Films by Multi-Target Sputtering Karla L. Perez MSE/REU Final Presentation Adv. Prof. King and Prof. Dayananda August 5, 2004.
GaAs and CsKSb Photocathodes for DC Gun
One-dimensional Ostwald Ripening on Island Growth An-Li Chin ( 秦安立 ) Department of Physics National Chung Cheng University Chia-Yi 621 Taiwan, ROC Prof.
Chemical Vapor Deposition ( CVD). Chemical vapour deposition (CVD) synthesis is achieved by putting a carbon source in the gas phase and using an energy.
N96770 微奈米統計力學 1 上課地點 : 國立成功大學工程科學系越生講堂 (41X01 教室 ) N96770 微奈米統計力學.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #5.
Size effect of tin oxide nanoparticles on high capacity lithium battery a node materials Yi-Chun Chen a, Jin-Ming Chen b, Yue-Hao Huang b, Yu-Run Lee.
BIAS MAGNETRON SPUTTERING FOR NIOBIUM THIN FILMS
NanotechnologyNanoscience Modeling and Simulation Develop models of nanomaterials processing and predict bulk properties of materials that contain nanomaterials.
Fabrication of Silicon Nanocones Using RF Microplasma Jet at Atmospheric Pressure 18th SYMPOSIUM ON PLASMA SCIENCE FOR MATERIALS (SPSM-18) ○ Zhongshi Yang.
02/24/ th FIB/SEM User Group Meeting, Washington DC Valery Ray Developing FIB GAE Recipes: Practical Application of “Unfinished.
In this study, it has been found that annealing at ambient air at 500 ˚C of DC sputtered Mo bilayer produce MoO x nanobelts. Evolution of MoO x nanobelts.
M. CuffianiIPRD04, Siena, May A novel position detector based on nanotechnologies: the project M. Cuffiani M. C., G.P. Veronese (Dip. di Fisica,
VTS Sputter Roll Coater
Preparation of films and their growth (a) Vacuum evaporation (b) Magnetron sputtering (c) Laser abrasion (d) Molecular beam epitaxy (e) Self-assembled.
Fig. 1 The heating ways for DSC (a) non-isothermal; (b) isothermal analyses (a)(b) Study of Thermal Properties in Zr-Al-Cu-Ni Amorphous Alloy by Adding.
Daniel Wamwangi School of Physics
Nanowires and Nanorings at the Atomic Level Midori Kawamura, Neelima Paul, Vasily Cherepanov, and Bert Voigtländer Institut für Schichten und Grenzflächen.
Techniques for Synthesis of Nano-materials
Chapter 0: Introduction of this course Ching Yuan Su.
In-situ fabrication of functionally graded Al/Mg 2 Si by electromagnetic separation Li Jianguo School of Materials Science and Engineering,
EE235 Presentation I CNT Force Sensor Ting-Ta YEN Feb Y. Takei, K. Matsumoto, I. Shimoyama “Force Sensor Using Carbon Nanotubes Directly Synthesized.
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Cycle performance of Si-based Thin Film Anodes for Li-ion Batteries Kwan-Soo.
Sputter deposition.
電子陶瓷研究室 中國材料科學學會年會 ( 台北科技大學 ) 2008 年 11 月 21 日 - 22 日,台灣,台北市。 Synthesis and properties of Ba 4 La(Sn 0.75 Ti 0.25 )Nb 3 O 15 ceramics by a reaction-sintering.
5 kV  = 0.5 nm Atomic resolution TEM image EBPG (Electron beam pattern generator) 100 kV  = 0.12 nm.
POSTER TEMPLATE BY: Fabrication of Nanobiosensors Tom Fitzgerald, Nathan Howell, Brian Maloney Oregon State University, Department.
Introduction P. Chelvanathan 1, Y. Yusoff 2, M. I. Hossain 1, M. Akhtaruzzaman 1, M. M. Alam 3, Z. A. AlOthman 3, K. Sopian 1, N. Amin 1,2,3 1 Solar Energy.
Growth evolution, adatom condensation, and island sizes in InGaAs/GaAs (001) R. Leon *, J. Wellman *, X. Z. Liao **, and J. Zou ** * Jet Propulsion Laboratory,
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Motivation There has been increasing interest in the fabrication and characterization of 1D magnetic nanostructures because of their potential applications.
Develop (K 0.5 Na 0.5 )NbO 3 Lead-Free Ferroelectric Thin Films by the RF Sputtering Technique Hsiu-Hsien Su.
6_thermal.cfm.
Electro-Ceramics Lab. Electrical Properties of SrBi 2 Ta 2 O 9 Thin Films Prepared by r.f. magnetron sputtering Electro-ceramics laboratory Department.
長程光纖通訊光源材料 InGaAsN 之特性介紹與近代發展 Reporter: 陳秀芬 Adviser: 郭艷光 博士 Date: 2004/01/06 92 學年度第一學期半導體雷射期末報告.
IV. Results and Discussion Effect of Substrate Bias on Structure and Properties of W Incorporated Diamond-like Carbon Films Ai-Ying Wang 1, Kwang-Ryeol.
Form Quantum Wires and Quantum Dots on Surfaces
N96770 微奈米統計力學 1 上課時間 : 上課地點 : 國立成功大學工程科學系越生講堂 (41X01 教室 ) 參考資料 微奈米統計力學 Supplement on Quantum Statistical Mechanics.
Nanotechnology Ninad Mehendale.
Molecular and Electronic Devices Based on Novel One-Dimensional Nanopore Arrays NSF NIRT Grant# PIs: Zhi Chen 1, Bruce J. Hinds 1, Vijay Singh.
1 MeVARC Tel Aviv University Electrical Discharge and Plasma Laboratory Depart of Electrical Engineering - Physical Electronics Experimental Study.
Section 5: Thin Film Deposition part 1 : sputtering and evaporation
Crystal α-Si 3 N 4 / Si-SiO x core-shell / Au-SiO x peapod-like axial triple heterostructure Tian-Xiao Nie, †, ‡ Zhi-Gang Chen, ‡ Yue-Qin Wu, † Yanan Guo,
MIT Microstructural Evolution in Materials 12: Nucleation
Pulsed Energetic Condensation of Nb Thin Film Cavities at JLab
Recent result of ~650-GHz SIS-device fabrication at NRO
OUTLINE 1. Electrical simulation of VCSELs : standard structures
Motivation Experimental method Results Conclusion References
University of Leicester
A.V. Rogov1, Yu.V. Martynenko1,2, Yu.V. Kapustin1, N.E. Belova1
Carbon Nanotube Vias By: Rhesa Nathanael.
Group Members: William Ballik Robbie Edwards Alex Klotz Gio Mitchell
Chapter 5 Plasma and Ion Beam Processing of Thin Films
MIT Microstructural Evolution in Materials 12: Nucleation
1.6 Magnetron Sputtering Perpendicular Electric Magnetic Fields.
へき開再成長法により作製された(110)GaAs 量子井戸における表面原子ステップの観察
Fabrication of Ge quantum dot circle on masked Si substrate
Nanocharacterization (III)
Yuanmin Shao, and Zuimin Jiang
Presentation transcript:

Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室

Outline 1.Introduction : Nanoparticle; nanowire; and PVD 2.Co nanoparticle by magnetron sputtering 3.Co nanoparticle and nanotube by ion-beam deposition 4.Conclusions

Traditional PVDs for nanopaticle fabrication Clusters by free jet expansion Nanoparticle by low temperature deposition Quantum dot by epitaxial growth

Clusters by free jet expansion

Nanoparticle by low temperature deposition

Quantum dot by epitaxial growth Stranski-Krastanow growth mode What happen when together? Shape evolution

Traditional VLS for nanowire growth

Objectives Si substrate native SiO 2 Co nanoparticles These can be used for catalysts. Various types of CNT can be grown.

(a)(b)(c) (d) (e) (f) Deposition distance vs surface morphology AFM P W = 8 mtorr 、 P DC = 50 W 、 V bias = -100 V 、 t D = 10 sec 60mm70mm80mm 90mm100mm110mm Size =60-120nmSize = nm Size = nm

-50V (b) 0V (c) +250V (d) +525V (e) 0 nm 17.5 nm 35 nm -100V (a) 500 nm Substrate bias vs surface morphology AFM P W = 8 mtorr 、 P DC = 50 W 、 D T, Sub = 110 mm 、 t D = 10 sec

(b) Substrate bias vs size and height

Substrate bias vs island density positive V bias obvious particles uniform distribution

1μm100 nm Substrate bias vs surface morphology SEM plan view -100V -50V +250V

20 nm fcc structure BF DF Substrate bias vs nanoparticle microstructure TEM plan view

20 nm 100 nm 40 nm Substrate bias vs nanoparticle microstructure TEM cross sectionV sub = +250 V

Substrate bias – nanoparticle growth mechanism Coulomb force self-limited growth deposition e-e- e-e- crevice filling SiO 2 Si substrate repulsion deposition e-e- e-e- repulsion SiO 2 Si substrate island growth Si substrate deposition e-e- e-e- SiO 2

-100 V -50 V +525 V +250 V 0 V Substrate bias vs nanoparticle magnetic property

Growth time vs surface morphology AFM P W = 8 mtorr 、 P DC = 50 W 、 D T, Sub = 110 mm 、 t D = 10 sec 、 Vsub = +525 V (a) 20.1 ML (b) 39.8 ML (c) 59.6 ML 10 sec 20 sec30 sec

(a) 20 nm (b) 20 nm (a) 100 nm (c) 50 nm (b) 100 nm 20 sec fcc 30 sec fcc Growth time vs nanoparticle microstructure TEM cross sectionV sub = +250 V

1 : ANODE grid 2 : A/D grid 3 : Ground grid solenoid coil P waveguide gas ECR zone E θ target water cooling Cu backing plate resputtered atom sputtered atom fast Ar substrate sputter voltage (positive bias) Mechanism of ion beam deposition

Co nanoparticle and wire by ion beam deposition SEM 2sec 、 RT2sec 、 400 ℃ ( c )( d ) 2sec 、 950 ℃

10 12 cm cm -2 5*10 8 cm -2 Co nanoparticle with various density

Co nanowire growth by ion beam deposition AFM 0.5  m Nucleation of Cobalt silicide nanowire On Si(001) 0.5  m Cobalt magnetic quantum dots on Si(001)

100nm Co nanowire growth by ion beam deposition TEM

Conclusions Nanoparticle can be formed under negative bias at suitable conditions, however, damaged. Due to Coulomb force self-limited growth, Co nanoparticle is of very uniform distribution without obvious damage. Co nanoparticle as small as 10nm can be prepared by sputtering and exhibit superparamagnetic property

Conclusions By IBS, the Co dot density can be varied by 1000 with very uniform size distribution EPitaxial Cobalt silicide nanowire can be fabricated by IBS

Acknowledgements 1.Students : 鍾秉憲 ; 王志欽 2. 國科會 NSC E