ЛЕКЦИЯ 27. Курс: “Проектирование систем: Структурный подход” Каф. “Коммуникационных сетей и систем”, Факультет радиотехники и кибернетики Московский физико-технический.

Slides:



Advertisements
Similar presentations
THE ESTIMATION OF BUILDINGS VULNERABILITY AND EXPERIENCE IN APPLICATION OF MODERN SEISMIC PROTECTION SYSTEMS IN ARMENIA PhD. Z. Khlghatyan, PhD. V. Arzumanyan,
Advertisements

Drafting I introduces students to the use of simple and complex graphic tools used to communicate and understand ideas and concepts found in the areas.
2.2 STRUCTURAL ELEMENT BEAM
Bridge Engineering (6) Superstructure – Concrete Bridges
Structural System Overview
T6. DESIGN OF REINFORCED CONCRETE BEAM Reinforced concrete framed building T6. Design of reinforced concrete beam page 1. Alaprajz Floor plan Beam: linear.
1 Sikandar Iqbal Graduate Trainee Engineer Civil Engineering Township Comparison & Analysis of Township Buildings.
Part1: Shollow foundations
STAIRCASES. STAIRCASES Introduction Staircases provide means of movement from one floor to another in a structure. Staircases consist of a number of.
Summary Sheet Session Number : Date : Subject Expert : Dr. M.C. Nataraja Professor Department of Civil Engineering, Sri Jayachamarajendra.
Bridge Engineering (7) Superstructure – Reinforced Concrete Bridges
Contents : Introduction. Rapid Visual Screening.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
A Medical Office Building For The Primary Health Network Daniel Goff I Structural Option Dr. Thomas Boothby l Faculty Advisor Sharon, Pennsylvania Source:
The University Sciences Building Northeast, USA Final Presentation Chris Dunlay Structural Option Dr. Boothby.
High Rise Structural Systems
2001 Winter Presentation. Site Location Site View.
Courtesy of Holbert Apple Associates Georgia Avenue Building Introduction Statistics Gravity System Lateral System Problem Statement & Solution.
BEAMS AND COLUMNS.
Reading Structural Drawings
All Hakuna Resort photos in courtesy of LMN Development LLC Young Jeon Structural Option Advisor: Heather Sustersic Hakuna Resort AE Senior Thesis 2015.
TOPICS COVERED Building Configuration Response of Concrete Buildings
LECTURE 8-9. Course: “Design of Systems: Structural Approach” Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics Moscow.
LECTURE (compressed version). Course: “Design of Systems: Structural Approach” Dept. “Communication Networks &Systems”, Faculty of Radioengineering.
Structural Analysis and Design of
Nick Szakelyhidi Structural Option Office Building Washington, DC Nick Szakelyhidi Structural Option.
GARY NEWMAN STRUCTURES OPTION ADVISOR: DR. HANAGAN SENIOR THESIS PRESENTATION SPRING 2008.
TOWARDS HIERARCHICAL CLUSTERING
LECTURE 19. Course: “Design of Systems: Structural Approach” Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics Moscow.
LECTURE 13. Course: “Design of Systems: Structural Approach” Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics Moscow.
Lancaster, PA Courtyard by Marriott Danielle Shetler - Structural Option Senior Thesis - Spring 2005.
Towards Communication Network Development (structural systems issues, combinatorial models) Mark Sh. Levin Inst. for Inform. Transmission Problems, Russian.
Howard County General Hospital Patient Tower Addition Columbia, MD Kelly M. Dooley Penn State Architectural Engineering Structural Option.
Fordham Place Bronx, NY Aric Heffelfinger Structural Option Spring 2006.
Computer Associates International, Regional Office
Introduction 120,000 SF 10 Stories (90ft) $40 Million Aug – Dec.2011 Presentation Outline Introduction Base Steel Redesign Progressive Collapse Tie.
SteelStacks Performing Arts Center Sarah Bednarcik | Structural BAE/MAE Faculty Advisors: Dr. Linda Hanagan & Dr. Ali Memari Spring Thesis 2013Bethlehem,
James C. Renick School of Education PSU AE Senior Thesis 2006 Mick Leso - Structural North Carolina A&T State University - Greensboro.
Foundation Loads Dead Load Live Load Wind Load
LECTURE 27. Course: “Design of Systems: Structural Approach” Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics Moscow.
LECTURE Course: “Design of Systems: Structural Approach” Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics Moscow.
Biobehavioral Health Building The Pennsylvania State University Daniel Bodde Structural Option Advisor – Heather Sustersic.
Hunter Woron Spring 2012 Structural Professor Parfitt.
AR362 - Structural Systems In Architecture IV Lecture : Foundations
Building Construction
DESIGN OF AIRPORT TERMINAL AND CONTROL TOWER
TOWARDS FOUR-LAYER FRAMEWORK OF COMBINATORIAL PROBLEMS
Confined Masonry Construction
An-Najah National University
Building Information Modelling
An-Najah National University Faculty of Engineering
Chapter 5: Substructure
An-Najah National University Faculty of Engineering
Introduction to Structural Design
Beams.
Collapse Patterns.
Plain & Reinforced Concrete-1 CE3601
5 × 7 = × 7 = 70 9 × 7 = CONNECTIONS IN 7 × TABLE
5 × 8 = 40 4 × 8 = 32 9 × 8 = CONNECTIONS IN 8 × TABLE
4 × 6 = 24 8 × 6 = 48 7 × 6 = CONNECTIONS IN 6 × TABLE
5 × 6 = 30 2 × 6 = 12 7 × 6 = CONNECTIONS IN 6 × TABLE
Mitre III Building McLean VA Debra Schroeder Structural Option.
Masonry Bearing Walls.
10 × 8 = 80 5 × 8 = 40 6 × 8 = CONNECTIONS IN 8 × TABLE MULTIPLICATION.
3 × 12 = 36 6 × 12 = 72 7 × 12 = CONNECTIONS IN 12 × TABLE
Introduction to Structural Design
5 × 12 = × 12 = × 12 = CONNECTIONS IN 12 × TABLE MULTIPLICATION.
5 × 9 = 45 6 × 9 = 54 7 × 9 = CONNECTIONS IN 9 × TABLE
3 × 7 = 21 6 × 7 = 42 7 × 7 = CONNECTIONS IN 7 × TABLE
Presentation transcript:

ЛЕКЦИЯ 27. Курс: “Проектирование систем: Структурный подход” Каф. “Коммуникационных сетей и систем”, Факультет радиотехники и кибернетики Московский физико-технический институт (университет) / Марк Ш. ЛЕВИН Институт проблем передачи информации, РАН Ноябрь 12, 2004 ПЛАН: 1.Иерархический подход к диагностике сложных систем 2.Иерархическое оценивание составной системы: пример для здания: *модель здания и шкалы оценки для частей здания *метод интегрирующих таблиц *иерархический комбинаторный синтез *операции изменения и планирование процесса upgrade

Много-уровневая диагностика сложной (составной) системы ПРОЦЕСС УПРАВЛЕНИЕ ВХООДВЫХОД ДИАГНОСТИКА

F1F1 F6F6 F3F3 F2F2 F1F1 F5F5 F4F4 ПРОЦЕСС F6F6 F 2&3 F2F2 F3F3 F4F4 F5F5 F 4&5 Много-уровневая диагностика сложной (составной) системы

ШКАЛА РАЗРУШЕНИЕ ПЛОХОХОРОШО F1F1 F2F2 F3F3 F4F4 F5F5 F6F6 Много-уровневая диагностика сложной (составной) системы ОТЛИЧНО

F 2&3 F2F2 F3F3 F 4&5 F4F4 F5F5 F 1 и F 2&3 и F 4&5 и F 6 РЕЗУЛЬТИРУЮЩАЯ ОЦЕНКА Много-уровневая диагностика сложной (составной) системы

Example of building (evaluation from the viewpoint of earthquake engineering) Cantilever balcony Parapet wall

Generalized ordinal scale for damage 1.Distriction (global) 2.Distriction (local) 3.Chinks 4.Small chinks (hair like) 5.Without damage

Hierarchical model of building and corresponding scales Foundation 1.1 Basic structure 1.2 Floors 1.3 Building: S = A*B*C A C B F JI D HGE Frame Bearing structures Nonbearing structures Staircase Rigity core Partitioning walls Filler walls X X X X X X XXX X X X X XX X Example 1 Example 2

Method 1: integration tables E G H D Bearing structures D (1.2.1), scale [3,4,5]

Method 1: integration tables Nonbearing structures F (1.2.2), scale [2,3,4,5] J I

Method 1: integration tables Basic structure B (1.2), scale [2,3,4,5] F D

Method 1: integration tables A B C S Building S, scale [2,3,4,5] A B C S A B C S

Method 2: Hierarchical morphological design (combinatorial synthesis) Foundation 1.1 Basic structure 1.2 Floors 1.3 Building: S = A*B*C A C B F JI D HGE Frame Bearing structures Nonbearing structures Staircase Rigity core Partitioning walls Filler walls A 1 (2) A 2 (1) A 3 (2) C 1 (1) C 2 (3) C 3 (3) H 1 (1) H 2 (2) H 3 (3) J 1 (1) J 2 (3) J 3 (2) E 1 (1) E 2 (2) G 1 (1) G 2 (2) I 1 (2) I 2 (2) I 3 (1) I 4 (1) D 1 =E 1 *G 1 *H 1... D 12 =... F 1 =I 1 *J 1... F 12 =... B 1 =D 1 *F 7... B 16 =... S 1 =A 2 *B 1 *C 1 S 2 =A 2 *B 3 *C 1 S 3 =A 2 *B 4 *C 1 S 4 =A 2 *B 13 *C 1

Method 2: Hierarchical morphological design (combinatorial synthesis) Design Alternatives for Building Foundation A : A 1 (strip foundation), A 2 (bedplate foundation), A 3 (isolated parts) Frame E : E 1 (monolith frame), E 2 (precast frame) Rigidity core G : G 1 (monolith rigid core), G 2 (precast rigid core) Stair case H : H 1 (monolith staircase), H 2 (precast staircase), H 3 (composite staircase) Filler walls I : I 1 (small elements), I 2 (curtain panel walls), I 3 (precast enclose panel walls), I 4 (frame walls) Partitioning walls J : J 1 (precast panel walls), J 2 (small elements), J 3 (frame walls) Floors C : C 1 (monolith slabs), C 2 (composite slabs), C 3 (precast slabs)

Method 2: Hierarchical morphological design (combinatorial synthesis) E1E2G1G2E1E2G1G2 G 1 G 2 H 1 H 2 H NOTE: 3 corresponds to the best level of compatibility 0 corresponds to incompatibility J1J2J3J1J2J3 I 1 I 2 I 3 I Compatibility

Method 2: Hierarchical morphological design (combinatorial synthesis) D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 10 D 11 D 12 F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F NOTE: 3 corresponds to the best level of compatibility 0 corresponds to incompatibility Compatibility

Method 2: Hierarchical morphological design (combinatorial synthesis) A1A2A3C1C2C3A1A2A3C1C2C3 C 1 C 2 C 3 B 1 B 3 B 4 B NOTE: 3 corresponds to the best level of compatibility 0 corresponds to incompatibility Compatibility

Method 2: Hierarchical morphological design (combinatorial synthesis) Examples for building : S i = A 1 * (E 1 * G 1 * H 1 ) * (I 3 * J 1 ) * C 1 estimate 2 (Pareto-layer) S ii = A 2 * (E 2 * G 2 * H 2 ) * (I 3 * J 1 ) * C 1 estimate 2 (Pareto-layer) S iii = A 1 * (E 2 * G 2 * H 2 ) * (I 3 * J 1 ) * C 3 estimate 3 S iv = A 2 * (E 2 * G 2 * H 2 ) * (I 3 * J 1 ) * C 3 estimate 3 S v = A 1 * (E 2 * G 1 * H 1 ) * (I 3 * J 3 ) * C 3 estimate 4

Improvement (upgrade) of building Operation group I (frames): O 1 increasing a geometrical dimension and active reinforcement O 2 increasing of active reinforcement Operation group II (joints): O 3 increasing a level for fixing a longitudinal active reinforcement in zone of joints O 4 decreasing the step of reinforced cross rods in zone of joint Operation group III (cantilever and cantilever balcony): O 5 decreasing the projection cantilever O 6 supplementary supporting the cantilever Operation group IV (fronton and parapet wall): O 7 fixing a bottom part O 8 designing a 3D structure (special) Operation group V (connection between frame and filler walls): O 9 design of shear keys O 10 design of mesh reinforcement O 11 partition of filler walls by auxiliary frame

Improvement (upgrade) of building Binary relation “equivalence” and “nonequivalence” Binary relation “complementarity” and “noncomplementarity” Binary relation “precedence” BINARY RELATIONS OVER IMPROVEMENT OPERATIONS Group 1. Improvement of earthquake resistance Group 2. Quality of architecture and plan decisions Group 4. Utilization properties Group 4. Expenditure CRITERIA FOR IMPROVEMENT OPERATIONS

Improvement (upgrade) of building Model 1: Knapsack Model 2: Multiple choice problem Model 3: Multiple criteria ranking Model 4: Morphological clique problem Model 5: Scheduling ETC. COMBINATORIAL MODELS FOR PLANNING OF IMPROVEMENT

Combinatorial synthesis for planning of redesign (improvement, upgrade) Improvement : S = A*B*(C*D)*E A C B D E O 1 (3) O 2 (1) O 1 &O 2 (4) None O 3 (32) O 4 (1) O 3 &O 4 (2) None O 9 (3) O 10 (2) O 11 (3) None O 7 (3) O 8 (2) None O 5 (3) O 6 (4) None Strategy: O 2 => O 4 => O 5 &O 7 (4) => O 10