Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross.

Slides:



Advertisements
Similar presentations
Introduction1-1 message segment datagram frame source application transport network link physical HtHt HnHn HlHl M HtHt HnHn M HtHt M M destination application.
Advertisements

5: DataLink Layer5-1 Asynchronous Transfer Mode: ATM r 1990’s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service.
Network Layer4-1 Computer Networking (Datakom) Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 14.
10 - Network Layer. Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving.
Network Layer Overview and IP
11- IP Network Layer4-1. Network Layer4-2 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 13.
4: Network Layer4a-1 Network Layer Goals: r understand principles behind network layer services: m routing (path selection) m dealing with scale m how.
1 Network Layer: Host-to-Host Communication. 2 Network Layer: Motivation Can we built a global network such as Internet by extending LAN segments using.
1 Announcements Review session next Friday 03/11 Homework 5 due on Friday 03/04 Project 3 due Wednesday 03/16.
Network Layer4-1 Data Communication and Networks Lecture 6 Networks: Part 1 Circuit Switching, Packet Switching, The Network Layer October 13, 2005.
Internet Protocol ECS 152A Xin Liu Ref: slides by J. Kurose and K. Ross.
Network Layer session 1 TELE3118: Network Technologies Week 4: Network Layer Basics, Addressing Some slides have been taken from: r Computer Networking:
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 15.
IP-UDP-RTP Computer Networking (In Chap 3, 4, 7) 건국대학교 인터넷미디어공학부 임 창 훈.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright
4: Network Layer4a-1 IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time.
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
Introduction to Network Layer. Network Layer: Motivation Can we built a global network such as Internet by extending LAN segments using bridges? –No!
Asynchronous Transfer Mode: ATM r 1980s/1990’s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Network Layer4-1 Summary: TCP Congestion Control When CongWin is below Threshold, sender in slow-start phase, window grows exponentially. When CongWin.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 18 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Virtual Circuit Network. Network Layer 2 Network layer r transport segment from sending to receiving host r network layer protocols in every host, router.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
Lecture 6 Overview. TCP: Transmission Control Protocol TCP is an alternative transport layer protocol supported by TCP/IP. TCP provides: – Connection-oriented.
Network Layer 4-1 Chapter 4 Network Layer. Network Layer 4-2 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3.
Introduction 1-1 EKT355/4 ADVANCED COMPUTER NETWORK MISS HASNAH AHMAD School of Computer & Communication Engineering.
7-1 Last time □ Wireless link-layer ♦ Introduction Wireless hosts, base stations, wireless links ♦ Characteristics of wireless links Signal strength, interference,
1 CSE3213 Computer Network I Network Layer (7.1, 7.3, ) Course page: Slides modified from Alberto Leon-Garcia.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Network Layer introduction.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
1 John Magee 24 February 2014 CS 280: Network Layer: Virtual Circuits / Datagram Networks and What’s inside a Router? Most slides adapted from Kurose and.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
4: Network Layer4-1 Schedule Today: r Finish Ch3 r Collect 1 st Project r See projects run r Start Ch4 Soon: r HW5 due Monday r Last chance for Qs r First.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol.
Network Layer4-1 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection”
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Forwarding.
The Internet Network layer
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
IP Fragmentation. Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on rcving side,
1 COMP 431 Internet Services & Protocols The IP Internet Protocol Jasleen Kaur April 21, 2016.
IP Internet Protocol. IP TCP UDP ICMPIGMP ARP PPP Ethernet.
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Network Layer4-1 Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol – Datagram.
Introduction to Networks
The Network Layer.
INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723
Data Communication and Networks
Chapter 4 Network Layer All material copyright
Network Layer Goals: Overview:
CS4470 Computer Networking Protocols
Chapter 4-1 Network layer
Network Layer I have learned from life no matter how far you go
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April Network Layer.
32 bit destination IP address
Presentation transcript:

Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross

Road Map I. Introduction Computer Networks Overview Layered architecture II. IP Protocols Internet Protocol Routing protocols ICMP and IGMP III. Transport Layer UDP TCP

Goals Principles of network layer services Internet Protocol –Addressing –Routing –ARP –ICMP

Overview HTTP User process SNMP TCPUDP ICMPIP IGMP ARPRARP Hardware interface application message transport segment networkdatagram link frame User process Encapsulation Demultiplexing

Network layer functions transport packet from sending to receiving hosts network layer protocols in every host, router network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical application transport network data link physical

Functions path determination: route taken by packets from source to dest. Routing algorithms forwarding: move packets from router’s input to appropriate router output call setup: some network architectures require router call setup along path before data flows (not Internet)

Network service model Q: What service model for transporting packets from sender to receiver? guaranteed bandwidth? preservation of inter-packet timing (no jitter)? loss-free delivery? in-order delivery? congestion feedback to sender? ? ? ? virtual circuit or datagram? The most important abstraction provided by network layer: service abstraction

Virtual circuits call setup, teardown for each call before data can flow each packet carries VC identifier (not destination host ID) every router on source-dest path maintains “state” for each passing connection link, router resources (bandwidth, buffers) may be allocated to VC –to get circuit-like perf. “source-to-dest path behaves much like telephone circuit”

Virtual circuits: signaling protocols used to setup, maintain teardown VC used in ATM, frame-relay, X.25 not used in today’s Internet application transport network data link physical application transport network data link physical 1. Initiate call 2. incoming call 3. Accept call 4. Call connected 5. Data flow begins 6. Receive data

Datagram networks: the Internet model no call setup at network layer routers: no state about end-to-end connections –no network-level concept of “connection” packets forwarded using destination host address –packets between same source-dest pair may take different paths application transport network data link physical application transport network data link physical 1. Send data 2. Receive data

Network layer service models: Network Architecture Internet ATM Service Model best effort CBR VBR ABR UBR Bandwidth none constant rate guaranteed rate guaranteed minimum none Loss no yes no Order no yes Timing no yes no Congestion feedback no (inferred via loss) no congestion no congestion yes no Guarantees ? Internet model being extended: Intserv, Diffserv

VC vs. Datagram VC –Guaranteed service –Complexity Datagram –Simple –Best effort

Datagram or VC network: why? Internet data exchange among computers –“elastic” service, no strict timing req. “smart” end systems (computers) –can adapt, perform control, error recovery –simple inside network, complexity at “edge” many link types –different characteristics –uniform service difficult application at the end system, easy to define new services ATM evolved from telephony human conversation: –strict timing, reliability requirements –need for guaranteed service “dumb” end systems –telephones –complexity inside network

Internet Protocol Functionality: –Determine how to route packets from source to destination –Hide the details of the physical network –Unreliable, connectionless, datagram delivery To be studied: –Addressing –Routing –ARP –ICMP and IGMP

Encapsulation source destination original message Transport Network Link Application Transport Network Link Application

IP header ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time to live 32 bit source IP address IP protocol version number header length (bytes) max number remaining hops (decremented at each router) for fragmentation/ reassembly total datagram length (bytes) upper layer protocol to deliver payload to head. len type of service “type” of data flgs fragment offset upper layer 32 bit destination IP address Options (if any) E.g. timestamp, record route taken, specify list of routers to visit. 20 bytes overhead

IP Header Version: 4 Header length: 4 bits, max 15x4=60 bytes TOS: 0 for normal service, Total length: 16 bits, max bytes TTL: 32/64, decrease by one in each hop Protocol field: TCP,UCP,ICMP,IGMP,etc. Checksum: header only

IP Address 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to to to bits 7 bits 14 bits 21 bits 28 bits Class-based address:

IP addressing: CIDR Classful addressing: –inefficient use of address space, address space exhaustion –e.g., class B net allocated enough addresses for 65K hosts, even if only 2K hosts in that network CIDR: Classless InterDomain Routing –network portion of address of arbitrary length –address format: a.b.c.d/x, where x is # bits in network portion of address network part host part /23