Lesson 1: Force and Pressure

Slides:



Advertisements
Similar presentations
Pressure and Pivots Pressure P = F / A Fluid pressure P = ρ g h
Advertisements

Motion Notes 2.
Fluid Pressure Chapter 13.1.
Pressure. What is Pressure? “Amount of force exerted on an area” Earth’s gravity pulls downward Due to gravity, your feet exert a force on the surface.
Pressure and Moments.
D. Crowley, To be able to explain how gases and liquids exert pressure Tuesday, May 19, 2015.
Physical Science Chapter 13
Ch 14 - Hydraulics.
Moments and Turning Forces. The Lifting Challenge  Who is strongest?
1) Why is a solid not considered a fluid?
Physical Science Unit: Forces in Fluids.
Properties of Fluids 16.2 How do ships float?
Forces in Fluids Chapter 13.
P2 – Forces and Motion Lesson 4: Forces 1.
Forces and Fluids. What is a fluid? A fluid is any material that can flow and take the shape of its container. A fluid can flow because its particles.
Table of Contents Pressure Floating and Sinking Pascal’s Principle
Torque and Equilibrium
© NTScience.co.uk 2005KS3 Unit 7c - Environment1 Pressure and Moments.
Chapter: Force and Newton’s Laws
Guided Discussion Student notes are shown in blue.
Forces and Fluids Chapter 12 BIG IDEAS Newton’s laws apply to all forces Gravity is a force exerted by all masses Friction is a force that opposes motion.
Ch 7 Forces in fluids.
Forces Year 11 GCSE Physics Module 11. Starter  What is the unit of measurement of a force?  How fast is a cat travelling who covers 30m in 5s?  What.
Fluid Pressure fluid pressure is essential for us to do work –fluids always go from a point of high pressure to lower pressure –this movement of the fluid.
Moments LO: be able to calculate moments 07/03/2016 Write down everything you can remember about moments from Yr 9.
FORCES IN FLUIDS CHAPTER 11. Section 11-1 Pressure Pressure - related to the word press - refers to the force pushing on a surface.
Pressure.
Lesson Plan in Fluid Power
24/11/2017 Pressure and Moments.
Newton’s Laws We have already looked at Newton’s laws. Now we are going to look at them in more depth. You may have to revise this work if you can not.
KS4 Forces – Further Forces
Learning Objective and Success Criteria
Starter: Without looking in your book can you remember the formula for finding… Density Pressure Pressure in liquids.
KS3 Physics 9L Pressure and Moments.
Pressure in Solids.
Pressure.
What will happen – Why? When the barrier is removed, what will happen and can you explain why?
Starter: What do you understand already about… Density Pressure
What is pressure? Why would a lady in high heels standing on your foot hurt more than an elephant standing on your foot? The elephant has a larger.
Forces in Fluids Pressure.
Questions 1. A car travels 240 km in 8 hours. What is its speed?
Chapter 3 Behaviour of Fluids
KS3 Physics 9L Moments.
Force and Work.
P2 Higher Revision - The harder bits.
Forces and their interactions AQA FORCES – part 1
PRESSURE AND MOMENTS In This Topic We Will Learn About:
Pressure.
Pressure and Moments.
Physical Science Forces in Fluids.
Starter Questions Copy the diagram and label the forces
Pressure.
Hydraulics Noadswood Science, 2013.
IGCSE Physics Pressure.
IGCSE Physics Pressure.
Use of Fluids & Fluids and Living Things
FORCES IN FLUIDS CHAPTER 11.
Pressure and Moments.
Pressure and Moments KS3 Unit 7c - Environment.
Chapter 3 Gravity.
Chapter 3 Behaviour of Fluids
26/08/2019 Pressure and Moments W Richards Worthing High School.
Forces and their interactions AQA FORCES – part 1
Forces.
Presentation transcript:

Lesson 1: Force and Pressure Pressure and Moments Lesson 1: Force and Pressure Mr Kueres

Lesson Objectives To know what a force does and about balanced and unbalanced forces – especially air resistance and friction To know that pressure depends on the size of a force and the area over which it is exerted Mr Kueres

What is a Force? What Can a Force Do? A force can change the: Size Shape Speed And Direction of an object Mr Kueres

Balanced Forces If the forces on an object are balanced, they will have no effect on the motion of an object. I.e. The person (opposite) will remain still Or a car moving at 30mph with balanced forces acting on it, will continue to travel at 30mph Mr Kueres

Unbalanced Forces If the forces on an object are unbalanced, they will have some effect on the object’s motion (either change the direction or cause the object to speed up or slow down. Will the car below speed up or slow down? Drag (Resistive forces) Thrust (driving force) Mr Kueres

Pressure Pressure tells us about the effect of a force compared with the area over which it acts. Mr Kueres

Things to Do Large Area/Low Pressure Small Area/High Pressure Answer the questions on the worksheet ‘Big Pressure, Small Pressure’ – 10 minutes (H) Draw a table, as shown below, illustrating examples of large area/low pressure and small area/high pressure (F) Draw examples of things that will exert a high pressure because of its small surface area and a low pressure because of its large surface area. Large Area/Low Pressure Small Area/High Pressure Mr Kueres

Homework Complete Worksheet ‘But Why?’ DUE IN: Next lesson If you have any questions about the homework, come and see me before it is due in. Mr Kueres

Lesson 2: Calculating Pressure Pressure and Moments Lesson 2: Calculating Pressure Mr Kueres

Lesson Objectives To recall and use the formula for pressure To know the units for pressure, force and area To be able to estimate area reliably Mr Kueres

Pressure Pressure is dependent on f and a . If the f applied gets larger, the p will be h . If the a becomes larger, the pressure will be s . Mr Kueres

Pressure Pressure is dependent on force and area. If the force applied gets larger, the pressure will be higher. If the area becomes larger, the pressure will be smaller. Mr Kueres

Formula for Pressure Pressure = Force Area P = F A Force is measured in N , N. Area is measured in s m , m2. Pressure is measured in Newtons per square metre, N/m2 or P , Pa. Mr Kueres

Formula for Pressure Pressure = Force Area P = F A Force is measured in Newtons, N. Area is measured in square metres, m2. Pressure is measured in Newtons per square metre, N/m2 or Pascals, Pa. Mr Kueres

Finding the Pressure we Exert on the Floor APPARATUS cm Squared Paper Bathroom Scales METHOD Draw around your foot on the piece of squared paper. Count the squares and estimate the area of your foot (More than half a square counts as 1, less than half a square doesn’t count). Use the bathroom scales to find your body WEIGHT. Remember: weight is a force and measured in NEWTONS) (1kg ~ 10N). Calculate the pressure exerted by each foot, then both feet together. Mr Kueres

Calculation for One Foot Pressure exerted by one foot = Half body weight Area of foot = = N/cm2 Mr Kueres

Calculation for Both Feet Pressure exerted by one foot = Body weight 2 x Area of foot = = N/cm2 Mr Kueres

Evaluation Give one reason why you think your experiment was accurate and one reason why you think your experiment was not very reliable Mr Kueres

Things to Do (H) Answer the questions on the Pressure Practice Worksheet in your exercise books. (F) Complete the worksheet 9La/3: Pressure Points Mr Kueres

Lesson 3: Compression of Liquids and Gases Pressure and Moments Lesson 3: Compression of Liquids and Gases Mr Kueres

Lesson Objectives To review the formula for pressure To know whether liquids and gases can be compressed To know that liquids transmit pressure To know that pressure increases with fluid depth Mr Kueres

Pressure Formula As the force increases, pressure increases. If the surface area increases, pressure will decrease. Pressure = Force Area P = F A Mr Kueres

Pressure = force/area. There is a direct relationship between pressure and force – increasing the force the pressure (provided that the area stays the same). There is an relationship between force and area – increasing the area decreases the pressure (provided that stays the same). If force is measured in , N, and area is measured in metres, m2, then the unit of pressure is the . The atmosphere exerts pressure. Outside the Earth’s , there is no air and no atmospheric pressure. Water also exerts pressure. Water exerts more pressure at greater . Mr Kueres

Pressure Pressure = force/area. There is a direct relationship between pressure and force – increasing the force increases the pressure (provided that the area stays the same). There is an inverse relationship between pressure and area – increasing the area decreases the pressure (provided that force stays the same). If force is measured in Newtons, N, and area is measured in square metres, m2, then the unit of pressure is the Pascal. The atmosphere exerts pressure. Outside the Earth’s atmosphere, there is no air and no atmospheric pressure. Water also exerts pressure. Water exerts more pressure at greater depth. Mr Kueres

Compression in Liquids and Gases In a gas, the are a long way apart and it’s not too hard to push them closer . In a , it’s very hard to particles much closer together. So, the particle model can explain the different of gases and liquids under . Mr Kueres

Compression in Liquids and Gases In a gas, the particles are a long way apart and it’s not too hard to push them closer together. In a liquid, it’s very hard to push particles much closer together. So, the particle model can explain the different behaviour of gases and liquids under pressure. Mr Kueres

Introduction to Hydraulics Many robots use hydraulics or liquid pressure. There are two cylinders – a master cylinder and a slave cylinder – connected by a sturdy pipe. The master cylinder contains the effort piston and the slave cylinder contains the load piston. The slave does everything that its master tells it to do, but it does it with more force than the master could manage. Hydraulics are also used in jacks to lift up cars. Mr Kueres

The Hydraulic Jack X Effort Small piston provides the effort but moves along way Hydraulic fluid is pushed through Increased pressure results in load being lifted Large piston lifts the load but doesn’t move as far X Non-Return Valve Mr Kueres

Hydraulics If the load piston has an area 5 times that of the effort piston, the load lifted is 5 times the effort, BUT moves only 1/5 the distance. Mr Kueres

Questions Why do we use oil and not water in hydraulic machines? What is the non-return valve for? What would happen if there was an air bubble in the pipe work between two cylinders? Mr Kueres

Motor Vehicle Brakes If liquids are useful because they are incompressible and air in hydraulic fluid prevents it working effectively, why do some vehicles have brakes operated by compressed air? Mr Kueres

Hydraulics Review A system can convert a small force into a bigger force. The system is filled with liquid, which is . The force acting on the piston in the master cylinder acts over a small . The is transmitted through the liquid, so the same pressure acts on the piston in the slave cylinder, but it acts over a bigger area. The same pressure acting over a bigger area produces a bigger . A gas is of no use in a hydraulic system because it is . Pressure acting on a gas pushes the closer together. In a the particles are already close together and it’s very hard to make them closer. Mr Kueres

Hydraulics Review A hydraulic system can convert a small force into a bigger force. The system is filled with liquid, which is incompressible. The force acting on the piston in the master cylinder acts over a small area. The pressure is transmitted through the liquid, so the same pressure acts on the piston in the slave cylinder, but it acts over a bigger area. The same pressure acting over a bigger area produces a bigger force. A gas is of no use in a hydraulic system because it is compressible. Pressure acting on a gas pushes the particles closer together. In a liquid the particles are already close together and it’s very hard to make them closer. Mr Kueres

Deep Sea Diving Why does a diver need to breathe compressed air? The pressure of the water above him makes it hard to inhale with out the gas helping. The pressure is due to the mass of water above him. Pressure = Weight of water Area of diver The pressure exerted depends on: the depth the weight of the fluid (hence, its density) Mr Kueres

Depth of water in metres 30 Water pressure in kilopascals 10 100 20 200 Depth of water in metres 30 Water pressure in kilopascals 300 40 400 50 500 Mr Kueres

Submarine Pressure Depth of water in metres Water pressure in kilopascals 10 100 20 200 30 300 40 400 50 500 Mr Kueres

Things to Do Answer the Questions on the Submarine Pressure worksheet Answer the Questions on the Water Pressure worksheet Mr Kueres

Submarine Pressure The bigger the depth of water, the b the water pressure is. For example, if the depth doubles then water pressure also d . And if the depth trebles then w p trebles. In fact, whenever the depth changes, the water pressure always changes by the same p . Mr Kueres

Submarine Pressure The bigger the depth of water, the bigger the water pressure is. For example, if the depth doubles then water pressure also doubles . And if the depth trebles then water pressure trebles. In fact, whenever the depth changes, the water pressure always changes by the same proportion. Mr Kueres

Pressure & Moments Lesson 4: Moments Mr Kueres

Lesson Objectives To know that a force can produce a turning effect To know that the turning effect is called a moment To know that the moment of a force depends on the size of the force and the distance of the force from the pivot To know that the pivot is also called a Fulcrum To be able to calculate the moment of a force Mr Kueres

Turning Effects Write a list of examples of where a force produces a turning effect. Mr Kueres

Demonstration Try opening a door in each of these three places: A point furthest away from the hinges A point roughly in the centre of the door A point close to the hinges At which point is it the most difficult to open the door? Mr Kueres

Demonstration Hold a metre ruler horizontally at arms length. If we apply a 10N weight near your hand, then gradually move the weight along the ruler, what happens? We find that it becomes increasingly difficult to hold the ruler horizontal. This is because the mass exerts a turning effect on the ruler. The turning effect is called a MOMENT and depends on the weight and the distance from the pivot Mr Kueres

Moments The turning effect caused by a force is called a moment and depends on the force (weight) applied and the distance from the pivot. Mr Kueres

Moment = Force Exerted x Distance from the Pivot Moments Moment = Force Exerted x Distance from the Pivot Moment = F x d UNITS Force is measured in N , N. Distance is measured in m , m (usually c , cm, for the distances we use in class). Moments are measured in N m , Nm (or Newton centimetres if the distance is measured in that unit) Mr Kueres

Moment = Force Exerted x Distance from the Pivot Moments Moment = Force Exerted x Distance from the Pivot Moment = F x d UNITS Force is measured in Newtons, N. Distance is measured in metres, m (usually centimetres, cm, for the distances we use in class). Moments are measured in Newton metres, Nm (or Newton centimetres if the distance is measured in that unit). Mr Kueres

Things to Do Complete 9Ld/3: Revision Questions Complete the Moments Example Sheet 1 Mr Kueres

Balancing Act We can use the idea of moments to see why an object balances (or overbalances) G G Centre of gravity acts between the wheels – the bus is balanced Centre of gravity acts outside of the wheels Mr Kueres

Things to Do Complete the Moments Example Sheet 2 Mr Kueres

Lesson 5: Balancing Moments Pressure and Moments Lesson 5: Balancing Moments Mr Kueres

Lesson 5 - Objectives To know how to find whether moments are balanced or unbalanced To be able to balance simple levers To know that if a lever is balanced, the anticlockwise and clockwise moments are equal Mr Kueres

Moment = Force Exerted x Distance from the Pivot Moments - Review Moment = Force Exerted x Distance from the Pivot Moment = F x d UNITS Force is measured in Newtons, N. Distance is measured in metres, m (usually centimetres, cm, for the distances we use in class). Moments are measured in Newton metres, Nm (or Newton centimetres if the distance is measured in that unit). Mr Kueres

Balancing Levers How can we alter levers e.g. seesaws, so that they balance? In which direction would you move the masses to make the lever above balance? Could you balance the lever by moving the pivot? If so how? Mr Kueres

Balancing Levers We can balance the lever by: 1. Moving the light weight away from the pivot. Lever moves clockwise Mr Kueres

Balancing Levers We can balance the lever by: 2. Moving the heavy weight towards the pivot. Lever moves clockwise Mr Kueres

Balancing Levers We can balance the lever by: 3. Moving the pivot towards the heavy weight. Lever moves clockwise Mr Kueres

Practical – Balancing Levers Use the ‘Levers’ worksheet to perform the investigation Record your results in an appropriate table Mr Kueres

Conclusion In order for a lever to balance, the c moment must e the anti-clockwise m . Mr Kueres

Conclusion In order for a lever to balance, the clockwise moment must equal the anti-clockwise moment. Mr Kueres

Total anti-clockwise moment = Total clockwise moment Anti-Clockwise Moment = Clockwise Moment Force x Distance from pivot = Force x Distance from Pivot Mr Kueres