Doron Lemze (Johns Hopkins University)

Slides:



Advertisements
Similar presentations
Cosmological Structure Formation A Short Course III. Structure Formation in the Non-Linear Regime Chris Power.
Advertisements

Effects of galaxy formation on dark matter haloes Susana Pedrosa Patricia Tissera, Cecilia Scannapieco Chile 2010.
Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
How special are brightest group and cluster galaxies? Anja von der Linden et al., 2007, MNRAS, 379, 867 On the prevalence of radio-loud active galactic.
Through a Lens, Darkly: An Innovative Multi-cycle Hubble Treasury Program to Study the Dark Universe Marc Postman Space Telescope Science Institute Science.
Cosmological constraints from estimates of M gas -M tot -c in X-ray luminous clusters S. Ettori (INAF/OA Bologna) with F. Gastaldello, M. Meneghetti, I.
Hierarchical Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Reunión Latinoamericana de Astronomía Córdoba, septiembre 2001.
CLASH: London calling! Welcome Welcome to the 2013 CLASH Science Team Meeting Royal Astronomical Society – Burlington House.
The Distribution of DM in Galaxies Paolo Salucci (SISSA) TeVPa Paris,2010.
CLASH: Cluster Lensing And Supernova survey with Hubble An HST Multi-Cycle Treasury Program designed to place new constraints on the fundamental components.
CLASH: Cluster Lensing And Supernova survey with Hubble ACS Parallels WFC3 Parallels 6 arcmin. = 2.2 z=0.5 Footprints of HST Cameras: ACS FOV in.
Galaxy Clusters as Plasma Physics Laboratories and Cosmological Probes Elena Rasia Physics Department, University of Michigan, Ann Arbor Chandra Fellows.
Dark Halos of Fossil Groups and Clusters Observations and Simulations Ali Dariush, Trevor Ponman Graham Smith University of Birmingham, UK Frazer Pearce.
Weak-Lensing selected, X-ray confirmed Clusters and the AGN closest to them Dara Norman NOAO/CTIO 2006 November 6-8 Boston Collaborators: Deep Lens Survey.
Prospects and Problems of Using Galaxy Clusters for Precision Cosmology Jack Burns Center for Astrophysics and Space Astronomy University of Colorado,
TESTING SCALING RELATION IN SITUATIONS OF EXTREME MERGER GALAXY CLUSTERS MASS ELENA RASIA (University of Michigan) IN COLLABORATION WITH MAXIM MARKEVITCH.
On the Distribution of Dark Matter in Clusters of Galaxies David J Sand Chandra Fellows Symposium 2005.
Discovery of Galaxy Clusters Around Redshift 1 Deborah Haarsma, Calvin GLCW, June 1, 2007.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Cosmological N-body simulations of structure formation Jürg Diemand, Ben Moore and Joachim Stadel, University of Zurich.
PRESIDENCY UNIVERSITY
THE STRUCTURE OF COLD DARK MATTER HALOS J. Navarro, C. Frenk, S. White 2097 citations to NFW paper to date.
MODELING INTRACLUSTER MEDIUM AND DARK MATTER IN GALAXY CLUSTERS Elena Rasia Dipartimento di Astronomia Università di Padova Padova, April 9th, 2002.
Cluster Lensing And Supernova survey with Hubble Marc Postman, STScI Future Directions in Galaxy Cluster Surveys, Paris, June 2014 Marc Postman, STScI.
Cosmological structure formation: models confront observations Andrea V. Maccio’ Max Planck Institute for Astronomy Heidelberg A. Boyarsky (EPFL),A. Dutton.
Through a Lens, Darkly: An Innovative Hubble Survey to Study the Dark Universe Marc Postman Space Telescope Science Institute HotSci August 2010 MACS
Dynamical state and star formation properties of the merging galaxy cluster Abell 3921 C. Ferrari 1,2, C. Benoist 1, S. Maurogordato 1, A. Cappi 3, E.
Impact of Early Dark Energy on non-linear structure formation Margherita Grossi MPA, Garching Volker Springel Advisor : Volker Springel 3rd Biennial Leopoldina.
HSCWLWG (March 17, 2009) Mass Density Profiles of Strong Lensing Clusters Keiichi Umetsu (ASIAA, LeCosPA/NTU)
“CLASH”: A Multi-Cycle Treasury Program to Study the Dark Universe Marc Postman Space Telescope Users Committee November 2, 2010 MACS z = 0.57.
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
Wide Field Imagers in Space and the Cluster Forbidden Zone Megan Donahue Space Telescope Science Institute Acknowledgements to: Greg Aldering (LBL) and.
Observational Constraints on Galaxy Clusters and DM Dynamics Doron Lemze Tel-Aviv University / Johns Hopkins University Collaborators : Tom Broadhurst,
1 st Subaru Intl. Conference Subaru Weak Lensing Study of Merging Clusters of Galaxies Reference: Okabe & Umetsu 2008, PASJ in press (astro-ph/ )
Constraining Dark Energy with Cluster Strong Lensing Priyamvada Natarajan Yale University Collaborators: Eric Jullo (JPL), Jean-Paul Kneib (OAMP), Anson.
Constraining cluster abundances using weak lensing Håkon Dahle Institute of Theoretical Astrophysics, University of Oslo.
Full strength of (weak) Cluster lensing Advisors: Tom Broadhurst, Yoel Rephaeli Collaborators: Keiichi Umetsu, Narciso Benitez, Dan Coe, Holland Ford,
PNe as mass tracers Dark-to-luminous properties of early-type galaxies Nicola R. Napolitano Kapteyn Institute Groningen (NL) ESO workshop: PNe beyond the.
MASS AND ENTROPY PROFILES OF X-RAY BRIGHT RELAXED GROUPS FABIO GASTALDELLO UC IRVINE & BOLOGNA D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK W. MATHEWS.
TEMPERATURE AND DARK MATTER PROFILES OF AN X-RAY GROUP SAMPLE FABIO GASTALDELLO UNIVERSITY OF CALIFORNIA IRVINE D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK.
TEMPERATURE AND DARK MATTER PROFILES OF AN X-RAY GROUP SAMPLE FABIO GASTALDELLO UNIVERSITY OF CALIFORNIA IRVINE D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
3 Mass profiles We use the temperature and gas density values obtained by fits to the spectra extracted in concentric annuli to calculate the gravitating.
Structural and scaling properties of galaxy clusters Probing the physics of structure formation M.Arnaud, G.Pratt, E.Pointecouteau (CEA-Sap Saclay) Dark.
Full strength of (weak) Cluster lensing
Welcome! CLASH Science Team Meeting Heidelberg, Germany Oct 17 – 19, 2011.
Gravitational Lensing Analysis of CLASH clusters Adi HD 10/2011.
X-RAY BRIGHT GALAXY GROUPS AS COSMOLOGICAL TOOLS FABIO GASTALDELLO UNIVERSITY OF CALIFORNIA IRVINE D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK W. MATHEWS.
A wide field multi-wavelength survey of two clusters at z~0.5 Tommaso Treu (UCSB)
On the evolution of Cool Core Clusters Joana Santos (INAF-Trieste) Piero Rosati (ESO), Paolo Tozzi (INAF-Trieste), Hans Boehringer (MPE), Stefano Ettori.
X-RAY BRIGHT GALAXY GROUPS AS COSMOLOGICAL TOOLS FABIO GASTALDELLO UNIVERSITY OF CALIFORNIA IRVINE D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK W. MATHEWS.
Observational Test of Halo Model: an empirical approach Mehri Torki Bob Nichol.
Zheng Dept. of Astronomy, Ohio State University David Weinberg (Advisor, Ohio State) Andreas Berlind (NYU) Josh Frieman (Chicago) Jeremy Tinker (Ohio State)
Strong Lensing Surveys and Statistics Dan Maoz. zqzq Survey strategies: Search among source population for lensed cases or Search behind potential lenses.
HeCS-SZ: An MMT/Hectospec Survey of SZ-selected Clusters Ken Rines (Western Washington University), Margaret Geller (SAO), Antonaldo Diaferio (Torino),
Elinor Medezinski Johns Hopkins University Galaxy Galaxy Lensing in CLASH clusters.
The influence of baryons on the matter distribution and shape of dark matter halos Weipeng Lin , Yipeng Jing ( Shanghai Astronomical Observatory , CAS.
Investigating dark matter halos of galaxies from the COMBO-17 survey Martina Kleinheinrich (Max-Planck-Institut für Astronomie, Heidelberg) & Hans-Walter.
Evolution of clusters M. Arnaud CEA - service d’astrophysique Saclay Assuming favored cosmology  =0.3  =0.7.
The Evolution of Intracluster Light Craig Rudick Department of Astronomy Case Western Reserve University.
Present-Day Descendants of z=3.1 Ly  Emitting (LAE) Galaxies in the Millennium-II Halo Merger Trees Jean P. Walker Soler – Rutgers University Eric Gawiser.
TWO SAMPLES OF X-RAY GROUPS FABIO GASTALDELLO UC IRVINE & BOLOGNA D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK W. MATHEWS UCSC F. BRIGHENTI BOLOGNA.
G.W. Pratt, Ringberg, 26/10/2005 Structure and scaling of nearby clusters of galaxies – in X-rays Gabriel W. Pratt, MPE Garching, Germany.
Mass Profiles of Galaxy Clusters Drew Newman Newman et al. 2009, “The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell.
Guoliang Li Shanghai Astronomic Observatory November 1st, 2006 November 1st, 2006 The giant arc statistic in the three-year WMAP cosmological model COLLABORATORS:
LoCuSS: An XMM survey of X-ray groups being accreted by massive clusters Chris Haines (INAF - OA Brera, Milano) Alexis Finoguenov (Helsinki,
Figure 1 from Hubble Space Telescope Combined Strong and Weak Lensing Analysis of the CLASH Sample: Mass and Magnification Models and Systematic Uncertainties.
Advisors: Tom Broadhurst, Yoel Rephaeli
Subaru Weak Lensing Study of Seven Merging Clusters of Galaxies
THE X-RAY C-M RELATION FABIO GASTALDELLO INAF-IASF MILANO, UCI
Presentation transcript:

Using Spectroscopic Data of Galaxies within and around Galaxy Clusters to Test Structure Formation Doron Lemze (Johns Hopkins University) Amata Mercurio, Andrea Biviano, Italo Balestra, Piero Rosati (PI: CLASH-VLT), Mario Nonino, Elinor Medezinski, Marc Postman (PI: CLASH), Thomas Richardson, Holland Ford, Massimo Meneghetti, Keiichi Umetsu, Daniel Kelson, Marisa Girardi, Maria Pereira, Eiichi Egami, with the CLASH and CLASH-VLT teams Acknowledgement: We thank Margaret J. Geller, Kenneth Rines, Michael Kurtz, and Antonaldo Diaferio for genorusly providing their redshift data in advance of publication. JHU/STScI HotSci - August 2014

JHU/STScI HotSci - August 2014 Outline Two different tests for structure formation using galaxy clusters: The mass density profile of clusters - the concentration-mass (C-M) relation (Lemze et al., in preparation). we provided a new observational test for a key prediction of the ΛCDM cosmological model: the contributions of mergers with different halo-to-cluster mass ratios to cluster-sized halo growth (Lemze et al. 2013). JHU/STScI HotSci - August 2014

Clusters of galaxies Subaru 5 bands composite color image MACS1206 at z=0.44 Umetsu et al. 2012 Galaxy clusters are the largest gravitationally bound structures in the universe. mass contours from joint strong- and weak-lensing analysis

20 CLASH clusters were X-ray selected Selected to be: “relaxed” Tx > 5 keV have Subaru imaging MACS 0329-0211 Abell 383 Abell 611 Abell 963 Abell 2261 CLJ1226+3332 MACS 0744+3927 MACS 1115+0129 MACS 1206-0847 RXJ 1347-1145 RXJ 1423+2404 MS-2137 RXJ 1720+3536 RXJ 2129+0005 MACS 0429-0253 MACS 1311-0310 RXJ 1532+3020 MACS 1931-2634 RXJ 2248-4431 Abell 209 To avoid lensing bias toward high concentrations 20 are selected to be “relaxed” clusters (based on their X-ray properties, i.e. smooth and regular surface brightness, and small separation between the BCG and the X-ray peak). Candidates were taken from: Allen et al. 2004; Schmidt & Allen 2007; Allen et al. 2008; Mantz et al. 2010 Images were taken from the Megan Donahue ACCEPT database, see also Donahue et al. 2014

JHU/STScI HotSci - August 2014 NFW mass profile Navarro, Frenk, & White 1996,1997 Navarro et al. 2004 JHU/STScI HotSci - August 2014 log r (kpc)

In agreement with observations X-ray Vikhlinin et al. 2006 In agreement with observations Lensing Galaxy dynaimcs Diaferio, Geller, & Rines 2005 Broadhurst et al. 2005

C-M ratio - predicted Ludlow et al. 2014

C-M ratio - observed vs. predicted Newman et al. 2013 Oguri et al. 2012

JHU/STScI HotSci - August 2014 Concentration values Comerford & Natarajan 2007 A1689 MS2137 JHU/STScI HotSci - August 2014

JHU/STScI HotSci - August 2014 Jeans analysis Jeans eq. Velocity anisotropy All the 4 free unknowns ( , , , and ) are functions, where M is taken to be NFW. Galaxy surface number density Projected velocity dispersion JHU/STScI HotSci - August 2014

The kurtosis

Removing interlopers using the caustics method Diaferio & Geller 1997 Diaferio 1999 JHU/STScI HotSci - August 2014

JHU/STScI HotSci - August 2014

JHU/STScI HotSci - August 2014

JHU/STScI HotSci - August 2014

C – M relation using galaxy kinematics vs. the theoretical expectation

CLASH Characterization Theoretical predictions from about 1,400 clusters simulated at high spatial and mass resolution by Meneghetti et al. 14 (MUSIC-2: DM + adiabatic gas) (M200, c200) measured both in 3D and 2D, taking into account projection effects The CLASH selection function gives a heterogeneous sample of relaxed (70%) and unrelaxed (30%) clusters CLASH X-ray selection function taken into account using Chandra X-ray image simulator (X-MAS)  c200 recovered from the lensing analysis of the CLASH clusters are c=[3-6], with an average value of 3.9 and a standard deviation of 0.6.  JHU/STScI HotSci - August 2014

The selection function X is a combination of 5 X-ray morphological parameters. P(X) X Meneghetti et al. 2014 JHU/STScI HotSci - August 2014

The C – M relation using weak lensing Umetsu et al. 2014 JHU/STScI HotSci - August 2014

The C – M relation using strong and weak lensing Merten et al. 2014

Bound galaxies Identified halos – overdensity halo finder Identified halos – FoF halo finder X-ray peak Virial radius Lemze et al. 2013

The differential fraction of cluster mass accreted Data – Overdensity HF Data – FoF HF MS - Genel et al. 2010,WMAP7 MS - Genel et al. 2010,WMAP1 WMAP1: Omega_m = 0.25, sigma8 = 0.9 WMAP7: Omega_m = 0.272, sigma8 = 0.807 Sigma8 = 0.82 Bennett et al. 2012. Sigma8 = 0.83 Planck Lemze et al. 2013

JHU/STScI HotSci - August 2014 Conclusions Except for one outlying cluster, our results for the mass-concentration relation derived by using galaxy dynamics are in ∼1σ agreement with the expected relation in ΛCDM cosmology (Lemze et al. 2014, in preparation). The mass-concentration relation based on lensing analysis is in excellent agreement with ΛCDM cosmology. For the first time, we tested a key outcome in the canonical cosmological model: the contributions of mergers with different mass ratios to cluster-size halos growth. We found ∼1σ agreement with the canonical cosmological model (Lemze et al. 2013). JHU/STScI HotSci - August 2014

JHU/STScI HotSci - August 2014 Future prospects Comparing (cluster to cluster) dynamical masses with lensing masses (Merten et al. 2014; Umetsu et al. 2014) and using realistic simulations (Meneghetti et al. 2014) to better understand the systematics of both methods. Apply dynamical and lensing analyses to surveys with a larger number of clusters, and constrain the cosmological model using the cluster mass function (i.e. number of clusters in a given mass range). JHU/STScI HotSci - August 2014

JHU/STScI HotSci - August 2014 The CLASH Science Team: Marc Postman, P.I. Timo Anguita Begona Ascaso Italo Balestra Matthias Bartelmann Narciso “Txitxo” Benitez Andrea Biviano Rychard Bouwens Larry Bradley Thomas Broadhurst Justice Bruursema Dan Coe Mauricio Carrasco Nicole Czakon Megan Donahue Thomas Eicher Kevin Fogarty Holland Ford Brenda Frye Or Graur Genevieve Graves Claudio Grillo Sunil Golwala Aaron Hoffer Øle Host Leopoldo Infante Saurubh Jha Yolanda Jimenez-Teja Stéphanie Jouvel Daniel Kelson Anton Koekemoer Ulricke Kuchner Ofer Lahav Ruth Lazkoz Doron Lemze Dan Maoz Curtis McCully Elinor Medezinski Space Telescope Science Institute (STScI) Universidad Catolica de Chile Instituto de Astrofisica de Andalucia (IAA) Max Plank Institut fur Extraterrestrivhe Physik (MPE) Universität Heidelberg INAF - OATS Leiden University STScI University of the Basque Country The Johns Hopkins University (JHU) ASIAA Michigan State University Universitas Sternwarte Munchen JHU Steward Observatory / U. Arizona Tel Aviv University (TAU) University of California, Berkeley Dark Cosmology Center California Institute of Technology Universidad Católica de Chile Rutgers University IAA UCL Carnegie Institute of Washington Universitat Wien TAU Chile Germany Israel Italy Netherlands Spain Switzerland Taiwan U.K. U.S.A. Part 1 JHU/STScI HotSci - August 2014 To be continue…

JHU/STScI HotSci - August 2014 The CLASH Science Team: Peter Melchior Massimo Meneghetti Amata Mercurio Julian Merten Anna Monna Alberto Molino John Moustakas Leonidas Moustakas Mario Nonimo Sara Ogaz Brandon Patel Enikö Regös Adam Riess Steve Rodney Piero Rosati P.I. VLT Jack Sayers Irene Sendra Stella Seitz Renke Smit Leonardo Ubeda Keiichi Umetsu Alex Viana Arjen van der Wel Bingxiao Xu Wei Zheng Adi Zitrin The Ohio State University INAF / Osservatorio Astronomico di Bologna INAF - OAC Universität Heidelberg Universitas Sternwarte Munchen/MPE IAA Siena College JPL/Caltech Space Telescope Science Institute Rutgers University European Laboratory for Particle Physics (CERN) STScI / JHU JHU University of Ferrara California Institute of Technology University of the Basque Country Universitas Sternwarte München Leiden University STScI Academia Sinica, Institute of Astronomy & Astrophysics Max Planck Institüt für Astronomie Caltech Chile Germany Israel Italy Netherlands Spain Switzerland Taiwan U.K. U.S.A. And friends: Thomas Richardson, Shy Genel, Andrew Newman, David Sand, Maria Pereira, Eiichi Egami Part 2 JHU/STScI HotSci - August 2014

JHU/STScI HotSci - August 2014 The End JHU/STScI HotSci - August 2014 Thanks for the CLASH team for a few of the slides.

DM universal density profiles found in simulations Generalized NFW, Zhao 1996 NFW Navarro, Frenk, White 1996, 1997 Moore et al. 1999 Einasto 1965 JHU/STScI HotSci - August 2014