Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

DYNAMICS OF TRAPPED BOSE AND FERMI GASES
DYNAMICS OF TRAPPED BOSE AND FERMI GASES Sandro Stringari University of Trento IHP Paris, June 2007 CNR-INFM Lecture 2.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
Non-Equilibrium Dynamics in Ultracold Interacting Atoms Sergio Smith (Howard University) Simulations of Ultracold Atoms in Optical Lattices.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Guillermina Ramirez San Juan
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Ultracold Plasmas ( Zafar Yasin). Outline - Creation and why considered important? - Characterization. - Modeling. -My Past Research. - Current Research.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
System and definitions In harmonic trap (ideal): er.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Determination of fundamental constants using laser cooled molecular ions.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Theory of interacting Bose and Fermi gases in traps Sandro Stringari University of Trento Crete, July 2007 Summer School on Bose-Einstein Condensation.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
The Equilibrium Properties of the Polarized Dipolar Fermi Gases 报告人:张静宁 导师:易俗.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
- Founded by INFM (Istituto Nazionale per la Fisica della Materia) June Hosted by University of Trento (Physics Department) - Director: Sandro Stringari.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Suppression of the quantum-mechanical collapse in quantum gases by repulsive interactions Hidetsugu Sakaguchi Department of Applied Science for Electronics.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Agenda Brief overview of dilute ultra-cold gases
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Laboratoire de Physique des Lasers
Spectroscopy of ultracold bosons by periodic lattice modulations
Department of Physics, Fudan University, Shanghai, China
R.G. Scott1, A.M. Martin2, T.M.Fromhold1, F.W. Sheard1.
Chromium Dipoles in Optical Lattices
Presentation transcript:

Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students and post-docs: Q. Beaufils, T. Zanon, R. Chicireanu, A. Pouderous Former members of the group: J. C. Keller, R. Barbé B. Pasquiou O. Gorceix P. Pedri B. Laburthe L. Vernac E. Maréchal G. Bismut

Why are dipolar gases interesting? Strongly anisotropic Magnetic Dipole-Dipole Interactions (MDDI) repulsive interactions attractive interactions Angle between dipoles Long range radial dependence Great interest in ultracold gazes of dipolar molecules

What’s so special about Chromium? 6 valence electrons (S=3): strong magnetic dipole of Dimensionless quantity: strength of MDDI relative to s-wave scattering Large dipole-dipole interactions: 36 times larger than for alcali atoms. Magnetic dipole of Only two groups have a Chromium BEC: in Stuttgart and Villetaneuse

How to make a Chromium BEC in 14s and one slide ? 425 nm 427 nm 650 nm 7S37S3 5 S,D 7P37P3 7P47P4  An atom: 52 Cr N = T=120 μK (1) (2) Z  An oven  A small MOT  A dipole trap  A crossed dipole trap  All optical evaporation  A BEC (Rb=10 9 or 10 ) (Rb=780 nm) Oven at 1350 °C (Rb 150 °C)  A Zeeman slower Q. Beaufils et al., PRA 77, (2008)

Outline  I) Hydrodynamics of a Dipolar BEC  II) Experimental results for collective excitations  III) How to measure the systematic effects

Similar results in Stuttgart PRL 95, (2005) I) 1 - One first effect of dipole dipole interactions: Modification of the BEC aspect ratio Thomas Fermi profile Striction of BEC (non local effect) Parabolic ansatz is still a good ansatz The magnetic field is turned of 90° Shift of the aspect ratio σ x y z y z x

I) 2 - Dynamic properties of interactions in a BEC 2 quadrupole modes Lowest modes 1 monopole mode Highest mode Out of equilibrium: 3 collective modes

I) 2 - Dynamic properties of interactions in a BEC 2 quadrupole modes Lowest modes 1 monopole mode Highest mode Out of equilibrium: 3 collective modes

I) 2 - Dynamic properties of interactions in a BEC 2 quadrupole modes Lowest modes 1 monopole mode Highest mode Out of equilibrium: 3 collective modes Theory: Superfluid hydrodynamics of a BEC in the Thomas-Fermi regime Continuity equation Euler Equation

I) 3 - Introducing a dipolar mean field Theory: Non local mean-field The frequencies of the collective modes depend on the orientation of the magnetic field relative to the trap axis. dependent on the orientation of the magnetic dipoles We measure a relative shift Frequency shift proportional to

II) 1 - How to excite one collective mode of the BEC 15ms modulation of the IR power with a 20% amplitude at a frequency ω close to the intermediate collective mode resonance. The cloud then oscillates freely for a variable time Imaging process with TOF of 5ms Aλ/2 plate controls the trap geometry : angle Φ Parametric excitations: Modulation of the « stiffness » of the trap by modulating its depth

II) 2- Oscillations of the aspect ratio of the BEC after parametric excitations Trap geometry close to cylindrical symmetry Very low (3%) noise on the TF radii High damping due to the large anharmonicity of the trap Change between two directions of the magnetic field We measure

II) 3 - Trap geometry dependence of the measured frequency shift Large sensitivity of the collective mode to trap geometry at the vicinity of spherical symmetry, unlike the striction of the BEC Good agreement With theoretical predictions Related to the trap anisotropy Relative shift of the quadrupole mode frequency Relative shift of the aspect ratio

II 1 - Influence of the BEC atom number smaller number of atoms Gaussian anzatz in order to take the quantum kinetic energy into account. In our experiment, it is not negligible compared to the mean-field due to MDDI. Large number of atoms (>10000) Thomas Fermi Regime Parabolic density profile No more in the Thomas Fermi Regime Parabolic anzatz is not valid

Results of simulations with the Gaussian anzatz: It takes three times more atoms for the frequency shift of the collective mode to reach the TF predictions than for the striction of the BEC Simulations with Gaussian anzatz Blue and Red Two different trap geometries

III) 1 - Measurement of the trap frequencies parametric oscillations of the trap depth + Potential gradient Excitation of center of mass motion Center of mass motion only depends on external potential Direct measurement of the trap frequencies A good way of measuring systematic shifts of trap frequencies

III) 2 - Origins of the systematic shifts on the trap frequencies In a Gaussian trap: magnetic gradient induced frequency shift => Trap geometry dependent Shift Light shift of Cr is slightly dependent on the laser polarization orientation with respect to the static magnetic field. Relative associated shift independent of the trap geometry. Acceleration due to magnetic potential gradient Waist of the trap along the gradient

III) 3 - Experimental results for the systematic shifts of the trap frequencies Fit by Excitation of center of mass motion Measurement of the trap frequencies The magnetic field is turned of 90° Measurement of relative systematic shift

Summary  Characterization of the effect of MDDI on a collective mode of a Cr BEC.  Good agreement with TF predictions for a large enough number of Atoms.  Large sensitivity to trap geometry.  Useful tool to characterize a BEC beyond the TF regime, for lower numbers of atoms.  First measurement of the tensorial light shift of Chromium.

Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaboration: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou O. Gorceix Q. Beaufils Paolo Pedri B. Laburthe L. Vernac J. C. Keller E. Maréchal G. Bismut

Trap geometry (aspect ratio) dependent shifts Theoretical results with a parabolic anzatz Eberlein, PRL 92, (2004) with assumed cylindrical symmetry of the trap See also: Pfau, PRA 75, (2007) for non axis-symmetric traps

Collective excitations of a BEC Collisionless hydrodynamics of a BEC in the Thomas- Fermi regime Continuity equation Euler Equation Time evolution of the BEC Scaling law Superfluid velocity with

Equation of Motion From the s-wave pseudopotential with a being the s-wave scattering lenght. Three solution for the linearized equation: Two « quadrupole » modes In our case the two lowest modes One « monopole » mode In our case the highest mode with and