Experiments with ultracold RbCs molecules Peter Molony Cs Rb.

Slides:



Advertisements
Similar presentations
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Advertisements

Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
H 2 CO OH H2OH2O HCO QED e- Quantum dipolar gas Precision test Chemical reactions Quantum measurement Cold and Ultracold Molecules EuroQUAM, Durham, April.
The Dynamics Of Molecules In Intense Ultrashort Laser Fields: Measurements of Ultrashort, Intense Laser-induced Fragmentation of The Simplest Molecular.
Towards a Laser System for Atom Interferometry Andrew Chew.
Laser System for Atom Interferometry Andrew Chew.
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Generation of short pulses
Making cold molecules from cold atoms
Quantum Computing with Trapped Ion Hyperfine Qubits.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Graham Lochead YAO 2009 Towards a strontium pyramid MOT Graham Lochead Durham University
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Raman Spectroscopy and Thin Films Alexander Couzis ChE5535.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
First year talk Mark Zentile
Laser System for Atom Interferometry Andrew Chew.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
T ECHNISCHE U NIVERSITÄT KAISERSLAUTERN K. Bergmann Lecture 6 Lecture course - Riga, fall 2013 Coherent light-matter interaction: Optically driven adiabatic.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Determination of fundamental constants using laser cooled molecular ions.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Mikael Siltanen,1 Markus Metsälä,1
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Using this method, the four wave transition linewidth was measured at several different frequencies of current modulation. The following plot shows the.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Progress Towards Formation and Spectroscopy of Ultracold Ground-state Rb 2 Molecules in an Optical Trap H.K. Pechkis, M. Bellos, J. RayMajumder, R. Carollo,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Analysis of strongly perturbed 1 1  – 2 3  + – b 3  states of the KRb molecule J. T. Kim 1, Y. Lee 2, and B. Kim 3 1 Department of Photonic Engineering,
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
D. DeMille, E.Hudson, N.Gilfoy, J.Sage, S.Sainis, S.Cahn, T.Bergeman, * E.Tiesinga † Yale University, * SUNY Stony Brook, † NIST Motivation: why ultracold.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
L. PruvostLab. A. Cotton, Orsay, F Molecular spectroscopy Molecular spectroscopy 2008 Weakly bound molecules. Analysis by the Lu-Fano method coupled.
Collisional Orientation Transfer Facilitated Polarization Spectroscopy Jianmei Bai, E. H. Ahmed, B. Beser, Yafei Guan, and A. M. Lyyra Temple University.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Resonance-enhanced Photoassociative Formation of Ground-state Rb 2 and Spectroscopy of Mixed-Character Excited States H.K. Pechkis, D. Wang, Y. Huang,
Maykel L. González-Martínez Laurent Bonnet and Pascal Larrégaray Statistical Product-State Distributions for Cold Exoergic Reactions in External Fields.
 The electron electric dipole moment (eEDM) is aligned with the spin and interacts with the giant (~84 GV/cm) effective internal electric field of the.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Making cold molecules from cold atoms
Model-Independent Measurement of Excited State Fraction in a MOT
Ultracold polar molecules in a 3D optical lattice
University of California, Berkeley
Presentation transcript:

Experiments with ultracold RbCs molecules Peter Molony Cs Rb

Peter Molony - YAO The RbCs team: Peter Molony, Phil Gregory, Michael Koeppinger, Zhonghua Ji, Bo Lu and Simon Cornish (PI) Theory:Caroline Blackley, Ruth Le Sueur, Jeremy Hutson

Peter Molony - YAO Goal: A quantum array of polar molecules Mott Insulator Transition Convert to ground state RbCs molecules Jaksch et al., PRL 89, (2002) Damski et al. PRL 90, (2003) Rubidium Caesium RbCs: Stable against reactive collisions d = 1.25 D, B rot = 0.5 GHz Induced d eff = d / 3 for E = B rot / d = 0.8 kV / cm

Peter Molony - YAO The experiment Dipole trap loaded by reducing field gradient Atoms collected in MOT Evaporation in quadrupole trap Load quadrupole trap Levitated dipole trap Apply a magnetic gradient to tilt the trap Reduce the beam intensity to lower the trap depth RF 2-species BEC! Phys. Rev. A (2013)

Peter Molony - YAO The experiment 1.Create a high phase space density atomic sample. 6S 1/2 X1+X1+ a3+a3+ (1) 3  Deeply Bound Molecule Feshbach Molecule Free Atoms ~1560nm ~980nm Magneto-association Stimulated Raman Adiabatic Passage 2. Associate weakly-bound molecules via a Feshbach resonance. 3. Transfer Feshbach molecules to the rovibrational ground state using stimulated Raman adiabatic passage (STIRAP). Potential Energy Convert atoms to molecules Atomic State Molecular Bound State Magnetic Field (B)

Peter Molony - YAO RbCs trapping ~4000 optically trapped molecules Phys. Rev. A (2014) Cs Rb

Peter Molony - YAO RbCs STIRAP L.P. Yatsenko et al., PRA 65, (2002) SS PP   SS PP  1  2 3 Relative linewidth of the two lasers D

Peter Molony - YAO RbCs STIRAP L.P. Yatsenko et al., PRA 65, (2002) Narrow linewidth High intensity Intensity control

Peter Molony - YAO RbCs spectroscopy Figure: M. Debatin, PhD Thesis, Innsbruck (2013) Data:S. Kotochigova and E. Tiesinga, J. Chem. Phys. 123, (2005) O. Docenko et al., PRA 81, (2010) STIRAP:W.C. Stwalley, EPJD 31, (2004) Excited state with mixed singlet – triplet character Good Franck–Condon overlap for both transitions Our laser: 6330 → 6711 cm -1 Find suitable intermediate state

Peter Molony - YAO RbCs STIRAP optical setup 1556 nm 980 nm EOM 980 nm DL Pro Cavity Wavemeter Experiment EOM 1556 nm DL Pro Fibre Coupler /2 Waveplate /4 Waveplate Optical Isolator Polarising Beam Splitter Glan-Thompson Polariser AOM Shutter Dichroic Mirror Photo Diode Molecules 1556 nm 980 nm

Peter Molony - YAO RbCs STIRAP optical setup

Peter Molony - YAO RbCs spectroscopy 7 transitions found so far:v’=38J’= (2) GHz v’=38J’= (2) v’=37J’= (2) v’=35J’= (2) v’=29J’= (2) v’=29J’= (2) v’=29J’= (2)

Peter Molony - YAO Ground state spectroscopy

Peter Molony - YAO Ground state rotational constant B rot = (1) cm -1 = (4) MHz Theory= 0.016(3)J Phys Chem A 116,11101 (2012) v=1 state 50 cm -1 higher

Peter Molony - YAO Outlook RbCs molecules in optical dipole trap. Magnetic moment of 87 RbCs in different internal states measured. Spectroscopy on electronically excited states. Absolute ground state found by spectroscopy. Setup ready for STIRAP. Summary Cs Rb

Peter Molony - YAO Outlook Measure dipole moment of ground state 87 RbCs molecules (electrodes ready) Transfer molecules into absolute ground state (STIRAP) Produce 85 RbCs molecules in new dipole trap New experimental setup Outlook Phys. Rev. A (R) (2013)

Peter Molony - YAO Goal: A quantum array of polar molecules Mott Insulator Transition Miscible Immiscible Convert to ground state RbCs molecules U 12 < (U 11 + U 22 )/2U 12 > (U 11 + U 22 )/2 Jaksch et al., PRL 89, (2002) Damski et al. PRL 90, (2003) Rubidium Caesium RbCs: Stable against reactive collisions d = 1.25 D, B rot = 0.5 GHz Induced d eff = d / 3 for E = B rot / d = 0.8 kV / cm

Peter Molony - YAO Last time Cs 2 Feshbach molecules

Peter Molony - YAO Last time

Peter Molony - YAO Last time

Peter Molony - YAO Last time

Peter Molony - YAO Last time

Peter Molony - YAO Magnetic moment

Peter Molony - YAO Magnetic moment

Peter Molony - YAO Trapped Cs 2 molecules

Peter Molony - YAO RbCs Feshbach molecules

Peter Molony - YAO RbCs Feshbach Molecules Cs Rb ~5000 RbCs molecules

Peter Molony - YAO RbCs molecules Magnetic moment measurement Keep molecules in the same position since the magnetic moment changes while the molecules are falling Vary magnetic field gradient Measure position after different period of time  mol,181G = -0.84(1)  B

Peter Molony - YAO RbCs magnetic moment

Peter Molony - YAO Next step RbCs excited state spectroscopy Excited state potential through Fourier transform spectroscopy (FTS) (O. Docenko et al., PRA 81, (2010)) Ground state potential measured using laser-induced fluorescence combined with Fourier transform spectroscopy (LIF-FTS) (C.E. Fellows et al., J. Mol. Spectrosc. 197, 19 (1999))

Peter Molony - YAO Next step RbCs excited state spectroscopy M. Debatin et al., Phys. Chem. Chem. Phys. 13, (2011) Resonances at ~ 1556 nm  FWHM ~ 2  x 5 MHz

Peter Molony - YAO First identify a suitable intermediate state with sufficient oscillator strength with both connected levels Excited state potential from PRA 81, (2010) Ground state potential from J. Mol. Spectrosc. 197, 19 (1999) Single photon excited state spectroscopy: Irradiate molecules only with L1 for 10  s to 10 ms Gamma can be calculated detuning the laser Rabi frequencies can be calculated using the decay during irradiation Two photon dark state resonance spectroscopy: Simultaneous irradiation with rectangular light pulses of L1 and L2 10 – 100  s irradiation time  L2 <<  L1 (more 980 nm light) Vary detuning of L1 (1550 nm) and keep L2 in resonance How do I know  L2 = 0 ???