Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation

Slides:



Advertisements
Similar presentations
Point-Slope Form 12-4 Warm Up Problem of the Day Lesson Presentation
Advertisements

Using Slopes and Intercepts
Parallel & Perpendicular Lines
Slope of Parallel and Perpendicular Lines Geometry 17.0 – Students prove theorems by using coordinate geometry, including various forms of equations of.
Write an equation given the slope and a point EXAMPLE 2 Write an equation of the line that passes through (5, 4) and has a slope of –3. Because you know.
Pre-Class Warm Up Find the slope of the line that passes through each pair of points. 1. (3, 6) and (-1, 4) 2. (1, 2) and (6, 1) 3. (4, 6) and (2, -1)
Do Now Find the slope of the line passing through the given points. 1)( 3, – 2) and (4, 5) 2)(2, – 7) and (– 1, 4)
5.4 Point Slope Form.
Warm Up Identify which lines are parallel.
Write an equation given two points
Writing the Equation of a Line
Warm Up Alice finds her flower bulbs multiply each year. She started with just 24 tulip plants. After one year she had 72 plants. Two years later she had.
Rewriting an equation in
Lesson 5.6 Point-Slope Form of the Equation of a Line.
Daily Homework Quiz Review 5.3
Point-Slope Formula Writing an Equation of a line Using the Point-Slope Formula.
2.4 – Writing Linear Equations. 2.4 – Writing Linear Equations Forms:
Writing Equations of a Line. Various Forms of an Equation of a Line. Slope-Intercept Form.
For the line that passes through points (-4, 3) and (-2, 4).
Slope of a Line Chapter 7.3. Slope of a Line m = y 2 – y 1 x 2 – x 1 m = rise run m = change in y change in x Given two points (x 1, y 1 ) and (x 2, y.
Point-Slope Form 8-4 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
ALGEBRA 1 Lesson 5-4 Warm-Up. ALGEBRA 1 “Point-Slope Form and Writing Linear Equations” (5-4) (5-3) What is “point- slope form”? How can you use point-slope.
Holt McDougal Geometry 3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
WARM UP Find three solutions to each equation. (lesson 4.2) 1.y = 1/2x y = -3/2x y = -2x XY.
Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz
Holt McDougal Geometry 3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Chapter 5:Write the equation of a line Given Two Points.
WARM UP YOU’RE CERTIFIED! 5.3 Writing Linear Equations Given Two Points Today’s Schedule: Lesson 5.3 Powerpoint Lesson 5.3 Powerpoint.
GEOMETRY HELP Find and compare the slopes of the lines. Each line has slope –1. The y-intercepts are 3 and –7. The lines have the same slope and different.
5-6 Point-Slope Form Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Choosing the Best Method Objective: To choose the best method of writing a linear equation between Slope-Intercept Form and Point-Slope Form. o Warm –
Point slope form of an equation Y - y₁ = m(X- x₁) (x₁, y₁) An ordered pair on the line m slope.
Point slope form of an equation Y - y₁ = m(X- x₁) (x₁, y₁) An ordered pair on the line m slope.
Point Slope Form. Write the equation of the line with slope 3 and passing through the point (1, 5). y – y 1 = m(x – x 1 )
4.3 – Writing Equations in Point Slope Form. Ex. 1 Write the point-slope form of an equation for a line that passes through (-1,5) with slope -3.
WARM-UP Solve each equation for y 1) 2) Determine if the following points are on the line of the equation. Justify your answer. 3) (3, -1) 4) (0, 1)
Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz
6.4 Point-Slope Form and Writing Linear Equations Point-Slope Form of a Linear Equation –The point-slope form of the equation of a non- vertical line that.
Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz
Lines in the Coordinate Plane
Use point-slope form to write an equation EXAMPLE 3 Write an equation in point-slope form of the line shown.
Parallel & Perpendicular Lines
Holt Geometry 3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Pre-Algebra 11-3 Using Slopes and Intercepts Warm Up Find the slope of the line that passes through each pair of points. 1. (3, 6) and (-1, 4) 2. (1, 2)
Pre-Algebra Point-Slope Form. Learn to find the equation of a line given one point and the slope.
Slopes of Parallel and Perpendicular Lines. Different Forms of a Linear Equation  Standard Form  Slope-Intercept Form  Point-Slope Form  Standard.
2.6 Finding equations of lines. Review Slope-Intercept Form: y = mx + b Point-Slope Form: y – y 1 = m (x – x 1 )
Holt McDougal Geometry 3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Holt McDougal Geometry 3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Holt Algebra Point-Slope Form Warm Up Find the slope of the line containing each pair of points. 1. (0, 2) and (3, 4) 2. (–2, 8) and (4, 2) 3. (3,
Equations of Lines Part 2 Students will: Write slope intercept form given a point and a slope 1.
Holt McDougal Algebra Point-Slope Form Graph a line and write a linear equation using point-slope form. Write a linear equation given two points.
5-4 Point-Slope Form and Writing Linear Equations Hubarth Algebra.
Algebra 1 Section 5.6 Write linear equations in standard form Recall: Forms of linear equations Standard Slope-intercept Point-slope Graph 4x – 3y = 6.
Using Slopes and Intercepts
Lesson 5.6 Point-Slope Form of the Equation of a Line
Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation
Using Slopes and Intercepts
Warm Up Write the equation of the line that passes through each pair of points in slope-intercept form. 1. (0, –3) and (2, –3) 2. (5, –3) and (5, 1) 3.
2.4 Writing the Equation of a Line
2.4 Writing the Equation of a Line
8/29/12 Writing the Equation of a Line
12.4 Point-Slope Form.
Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation
Point-Slope Form 12-4 Warm Up Problem of the Day Lesson Presentation
Slope-intercept Form of Equations of Straight Lines
General Form of Equation of a Straight Line.
Using Slopes and Intercepts
Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation
2.4 Writing the Equation of a Line
Presentation transcript:

Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation Pre-Algebra

Point-Slope Form 11-4 Warm Up Pre-Algebra 11-4 Point-Slope Form Warm Up Write the equation of the line that passes through each pair of points in slope-intercept form. 1. (0, –3) and (2, –3) 2. (5, –3) and (5, 1) 3. (–6, 0) and (0, –2) 4. (4, 6) and (–2, 0) y = –3 x = 5 y = – x – 2 1 3 y = x + 2

Problem of the Day Without using equations for horizontal or vertical lines, write the equations of four lines that form a square. Possible answer: y = x + 2, y = x – 2, y = –x + 2, y = –x – 2

Learn to find the equation of a line given one point and the slope.

Vocabulary point-slope form

The point-slope of an equation of a line with slope m passing through (x1, y1) is y – y1 = m(x – x1). Point on the line Point-slope form y – y1 = m (x – x1) (x1, y1) slope

Additional Example 1: Using Point-Slope Form to Identify Information About a Line Use the point-slope form of each equation to identify a point the line passes through and the slope of the line. A. y – 7 = 3(x – 4) y – y1 = m(x – x1) The equation is in point-slope form. y – 7 = 3(x – 4) Read the value of m from the equation. m = 3 (x1, y1) = (4, 7) Read the point from the equation. The line defined by y – 7 = 3(x – 4) has slope 3, and passes through the point (4, 7).

Additional Example 1B: Using Point-Slope Form to Identify Information About a Line 3 B. y – 1 = (x + 6) y – y1 = m(x – x1) 1 3 y – 1 = (x + 6) y – 1 = [x – (–6)] 1 3 Rewrite using subtraction instead of addition. m = 1 3 (x1, y1) = (–6, 1) The line defined by y – 1 = (x + 6) has slope , and passes through the point (–6, 1). 1 3

Try This: Example 1 Use the point-slope form of each equation to identify a point the line passes through and the slope of the line. A. y – 5 = 2 (x – 2) y – y1 = m(x – x1) The equation is in point-slope form. y – 5 = 2(x – 2) Read the value of m from the equation. m = 2 (x1, y1) = (2, 5) Read the point from the equation. The line defined by y – 5 = 2(x – 2) has slope 2, and passes through the point (2, 5).

Try This: Example 1B 2 3 B. y – 2 = (x + 3) y – y1 = m(x – x1) 2 3 y – 2 = (x + 3) y – 2 = [x – (–3)] 2 3 Rewrite using subtraction instead of addition. m = 2 3 (x1, y1) = (–3, 2) The line defined by y – 2 = (x + 3) has slope , and passes through the point (–3, 2). 2 3

Additional Example 2: Writing the Point-Slope Form of an Equation Write the point-slope form of the equation with the given slope that passes through the indicated point. A. the line with slope 4 passing through (5, -2) y – y1 = m(x – x1) Substitute 5 for x1, –2 for y1, and 4 for m. [y – (–2)] = 4(x – 5) y + 2 = 4(x – 5) The equation of the line with slope 4 that passes through (5, –2) in point-slope form is y + 2 = 4(x – 5).

Additional Example 2: Writing the Point-Slope Form of an Equation B. the line with slope –5 passing through (–3, 7) y – y1 = m(x – x1) Substitute –3 for x1, 7 for y1, and –5 for m. y – 7 = -5[x – (–3)] y – 7 = –5(x + 3) The equation of the line with slope –5 that passes through (–3, 7) in point-slope form is y – 7 = –5(x + 3).

Try This: Example 2A Write the point-slope form of the equation with the given slope that passes through the indicated point. A. the line with slope 2 passing through (2, –2) y – y1 = m(x – x1) Substitute 2 for x1, –2 for y1, and 2 for m. [y – (–2)] = 2(x – 2) y + 2 = 2(x – 2) The equation of the line with slope 2 that passes through (2, –2) in point-slope form is y + 2 = 2(x – 2).

Try This: Example 2B B. the line with slope -4 passing through (-2, 5) y – y1 = m(x – x1) Substitute –2 for x1, 5 for y1, and –4 for m. y – 5 = –4[x – (–2)] y – 5 = –4(x + 2) The equation of the line with slope –4 that passes through (–2, 5) in point-slope form is y – 5 = –4(x + 2).

Additional Example 3: Entertainment Application A roller coaster starts by ascending 20 feet for every 30 feet it moves forward. The coaster starts at a point 18 feet above the ground. Write the equation of the line that the roller coaster travels along in point-slope form, and use it to determine the height of the coaster after traveling 150 feet forward. Assume that the roller coaster travels in a straight line for the first 150 feet. As x increases by 30, y increases by 20, so the slope of the line is or . The line passes through the point (0, 18). 20 30 2 3

Additional Example 3 Continued y – y1 = m(x – x1) Substitute 0 for x1, 18 for y1, and for m. 2 3 y – 18 = (x – 0) 2 3 The equation of the line the roller coaster travels along, in point-slope form, is y – 18 = x. Substitute 150 for x to find the value of y. 2 3 y – 18 = (150) 2 3 y – 18 = 100 y = 118 The value of y is 118, so the roller coaster will be at a height of 118 feet after traveling 150 feet forward.

Try This: Example 3 A roller coaster starts by ascending 15 feet for every 45 feet it moves forward. The coaster starts at a point 15 feet above the ground. Write the equation of the line that the roller coaster travels along in point-slope form, and use it to determine the height of the coaster after traveling 300 feet forward. Assume that the roller coaster travels in a straight line for the first 300 feet. As x increases by 45, y increases by 15, so the slope of the line is or . The line passes through the point (0, 15). 15 45 1 3

Try This: Example 3 Continued y – y1 = m(x – x1) Substitute 0 for x1, 15 for y1, and for m. 1 3 y – 15 = (x – 0) 1 3 The equation of the line the roller coaster travels along, in point-slope form, is y – 15 = x. Substitute 300 for x to find the value of y. 1 3 y – 15 = (300) 1 3 y – 15 = 100 y = 115 The value of y is 115, so the roller coaster will be at a height of 115 feet after traveling 300 feet forward.

3. the line with slope 4 passing through (3, 5) Lesson Quiz Use the point-slope form of each equation to identify a point the line passes through and the slope of the line. 1. y + 6 = 2(x + 5) 2. y – 4 = – (x – 6) Write the point-slope form of the equation with the given slope that passes through the indicated point. 3. the line with slope 4 passing through (3, 5) 4. the line with slope –2 passing through (–2, 4) (–5, –6), 2 2 5 (6, 4), – 2 5 y – 5 = 4(x – 3) y – 4 = –2(x + 2)