Heterogeneity Hermine Maes TC21 March 2008. Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx.

Slides:



Advertisements
Similar presentations
Multivariate Twin Analysis
Advertisements

1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
Bivariate analysis HGEN619 class 2007.
Elizabeth Prom-Wormley & Hermine Maes
Multivariate Mx Exercise D Posthuma Files: \\danielle\Multivariate.
Sex-limitation Models Brad Verhulst, Elizabeth Prom-Wormley (Sarah, Hermine, and most of the rest of the faculty that has contributed bits and pieces to.
Factor analysis Caroline van Baal March 3 rd 2004, Boulder.
(Re)introduction to Mx Sarah Medland. KiwiChinese Gooseberry.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Heterogeneity Boulder, Heterogeneity Questions Are the contributions of genetic and environmental factors equal for different groups, such as sex,
Summarizing Data Nick Martin, Hermine Maes TC21 March 2008.
Developmental models. Multivariate analysis choleski models factor models –y =  f + u genetic factor models –P j = h G j + c C j + e E j –common pathway.
ACDE model and estimability Why can’t we estimate (co)variances due to A, C, D and E simultaneously in a standard twin design?
Heterogeneity Hermine Maes TC19 March Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx.
(Re)introduction to Mx. Starting at the beginning Data preparation Mx expects 1 line per case/family Almost limitless number of families and variables.
Introduction to Linkage
Univariate Analysis in Mx Boulder, Group Structure Title Type: Data/ Calculation/ Constraint Reading Data Matrices Declaration Assigning Specifications/
Continuous heterogeneity Shaun Purcell Boulder Twin Workshop March 2004.
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
Genetic Dominance in Extended Pedigrees: Boulder, March 2008 Irene Rebollo Biological Psychology Department, Vrije Universiteit Netherlands Twin Register.
Univariate Analysis Hermine Maes TC19 March 2006.
Mx Practical TC18, 2005 Dorret Boomsma, Nick Martin, Hermine H. Maes.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Raw data analysis S. Purcell & M. C. Neale Twin Workshop, IBG Colorado, March 2002.
Intro to Mx Scripts. Groups Data Calculation Constraint.
Power and Sample Size Adapted from: Boulder 2004 Benjamin Neale Shaun Purcell I HAVE THE POWER!!!
Karri Silventoinen University of Helsinki Osaka University.
 Go to Faculty/marleen/Boulder2012/Moderating_cov  Copy all files to your own directory  Go to Faculty/sanja/Boulder2012/Moderating_covariances _IQ_SES.
Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.
Spousal Associations for Alcohol Dependence and Educational Attainment Andrew Williams University of North Carolina Support from NIH Grants: AA07728, AA11998,
Practical SCRIPT: F:\meike\2010\Multi_prac\MultivariateTwinAnalysis_MatrixRaw.r DATA: DHBQ_bs.dat.
Power and Sample Size Boulder 2004 Benjamin Neale Shaun Purcell.
Combined Linkage and Association in Mx Hermine Maes Kate Morley Dorret Boomsma Nick Martin Meike Bartels Boulder 2009.
Univariate Analysis Hermine Maes TC21 March 2008.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Mx Practical TC20, 2007 Hermine H. Maes Nick Martin, Dorret Boomsma.
Continuous heterogeneity Danielle Dick & Sarah Medland Boulder Twin Workshop March 2006.
Frühling Rijsdijk & Kate Morley
Categorical Data Frühling Rijsdijk 1 & Caroline van Baal 2 1 IoP, London 2 Vrije Universiteit, A’dam Twin Workshop, Boulder Tuesday March 2, 2004.
Welcome  Log on using the username and password you received at registration  Copy the folder: F:/sarah/mon-morning To your H drive.
Netherlands Twin Register (NTR) 30,000 twin pairs registered at birth, born after 1986 Questionnaire variables Zygosity, health and growth2, 3, 5, 7, 10,
Linkage in Mx & Merlin Meike Bartels Kate Morley Hermine Maes Based on Posthuma et al., Boulder & Egmond.
Introduction to Multivariate Genetic Analysis Danielle Posthuma & Meike Bartels.
QTL Mapping Using Mx Michael C Neale Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Slides: faculty/sanja/2016/Moderating_covariances_IQ_SES/Slides/Moderating_covariances_practical.
Categorical Data HGEN
Extended Pedigrees HGEN619 class 2007.
Intro to Mx HGEN619 class 2005.
Multivariate Analysis
Bivariate analysis HGEN619 class 2006.
Univariate Twin Analysis
Introduction to Multivariate Genetic Analysis
BINARY and CATEGORICAL TRAITS
Heterogeneity HGEN619 class 2007.
Longitudinal Analysis
Univariate Analysis HGEN619 class 2006.
Liability Threshold Models
Heterogeneity Danielle Dick, Hermine Maes,
(Re)introduction to Mx Sarah Medland
Sarah Medland & Nathan Gillespie
Lucía Colodro Conde Sarah Medland & Matt Keller
BOULDER WORKSHOP STATISTICS REVIEWED: LIKELIHOOD MODELS
Multivariate Genetic Analysis
Multivariate Genetic Analysis: Introduction
Rater Bias & Sibling Interaction Meike Bartels Boulder 2004
Netherlands Twin Register (NTR)
Presentation transcript:

Heterogeneity Hermine Maes TC21 March 2008

Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx  ozbmiyace(4)(eq)(5).mx  Heterogeneity.ppt

Heterogeneity Questions Are these differences due to differences in the magnitude of the effects (quantitative)?  e.g. Is the contribution of genetic/environmental factors greater/smaller in males than in females? Are the differences due to differences in the nature of the effects (qualitative)?  e.g. Are there different genetic/environmental factors influencing the trait in males and females?

Groups ComparisonConcordant for group membership Discordant for group membership genderMZ & DZ: MM & FF pairs DZ: opposite sex pairs ageMZ & DZ: young & old pairs nationalityMZ & DZ: OZ & US pairs environmentMZ & DZ: urban & rural pairs MZ & DZ: urban/ rural pairs

Heterogeneity FemalesMales

Homogeneity Equate a f =a m Equate e f =e m Equate d f =d m FemalesMales

Goodness-of-Fit Statistics for BMI in young females+males -2LLdf 22 pAIC  2 dfp Sat f m Het f m Hom

Parameter Estimates for BMI in young females+males femalesmales PathsVar CompPathsVar Comp afaf efef dfdf af2af2 ef2ef2 df2df2 amam emem dmdm am2am2 em2em2 dm2dm2 Heterogeneity ADE AE Homogeneity ADE AE

What about DZO? Var F, Cov MZF, Cov DZF  a f, d f, e f Var M, Cov MZM, Cov DZM  a m, d m, e m Var Fdzo = Var F, Var M dzo = Var M Cov DZO  r g

Homogeneity

Heterogeneity

General Sex Limitation

Models for Concordant and Discordant Pairs G1 MZG1 DZG2 MZG2 DZG1G2 DZEP Saturated v1 v2 cov m1 m2 v3 v4 cov m3 m4 v5 v6 cov m5 m6 v7 v8 cov m7 m8 v9 v10 cov m9 m General a 1 d 1 e 1 m1 m2 a 1 d 1 e 1 m3 m4 a 2 d 2 e 2 m5 m6 a 2 d 2 e 2 m7 m8 a 1 d 1 e 1 a 2 c 2 e 2 r g m9 m Hetero- geneity a 1 d 1 e 1 m1 m2 a 1 d 1 e 1 m3 m4 a 2 d 2 e 2 m5 m6 a 2 d 2 e 2 m7 m8 a 1 d 1 e 1 a 2 c 2 e 2 m9 m Homo- geneity a 1 d 1 e 1 m1 m2 a 1 d 1 e 1 m3 m4 a 1 d 1 e 1 m5 m6 a 1 d 1 e 1 m7 m8 a 1 d 1 e 1 m9 m

Summary of Models General Sex Limitation Model:  quantitative and qualitative differences Heterogeneity Model:  quantitative but no qualitative differences Homogeneity Model:  no quantitative, no qualitative differences

! Estimate variance components - ACED model ! OZ BMI data - young females & males + opp sex #NGroups 7 #define nvar 1 #define nvar2 2 G1: Parameters Calculation Begin Matrices; X Lower nvar nvar Free ! FEMALES a Y Lower nvar nvar ! FEMALES c Z Lower nvar nvar Free ! FEMALES e W Lower nvar nvar Free ! FEMALES d S Lower nvar nvar Free ! MALES a T Lower nvar nvar ! MALES c U Lower nvar nvar Free ! MALES e V Lower nvar nvar Free ! MALES d H Full 1 1 ! scalar, 0.5 Q Full 1 1 ! scalar, 0.25 F Full 1 1 Free ! free for DZO End Matrices;

Group 1 continued Matrix H.5 Matrix Q.25 Start 1 F Bound 0 1 F Begin Algebra; A= X*X'; ! FEMALES a^2 C= Y*Y'; ! FEMALES c^2 E= Z*Z'; ! FEMALES e^2 D= W*W'; ! FEMALES d^2 K= S*S'; ! MALES a^2 L= T*T'; ! MALES c^2 N= U*U'; ! MALES e^2 O= V*V'; ! MALES d^2 End Algebra; End

Groups 2 & 3 Title G2: MZf data #include ozbmi2.dat Select if zyg =1 Select if agecat =1 Select bmi1 bmi2 ; Begin Matrices = Group 1; M Full 1 nvar2 Free End Matrices; Means M; Covariance A+C+E+D | A+C+D _ A+C+D | A+C+E+D; Option RSiduals; End Title G3: DZf data #include ozbmi2.dat Select if zyg =3 Select if agecat =1 Select bmi1 bmi2 ; Begin Matrices = Group 1; M Full 1 nvar2 Free End Matrices; Means M; Covariance A+C+E+D | _ | A+C+E+D; Option RSiduals End

Groups 4 & 5 Title G4: MZm data #include ozbmi2.dat Select if zyg =2 Select if agecat =1 Select bmi1 bmi2 ; Begin Matrices = Group 1; M Full 1 nvar2 Free End Matrices; Means M; Covariance K+L+N+O | K+L+O _ K+L+O | K+L+N+O ; Option RSiduals; End Title G5: DZm data #include ozbmi2.dat Select if zyg =4 Select if agecat =1 Select bmi1 bmi2 ; Begin Matrices = Group 1; M Full 1 nvar2 Free End Matrices; Means M; Covariance K+L+N+O | _ | K+L+N+O ; Option RSiduals End

Group 6: DZO Title G6: DZfm data #include ozbmi2.dat Select if zyg =5 Select if agecat =1 Select bmi1 bmi2 ; Begin Matrices = Group 1; M Full 1 nvar2 Free End Matrices; Means M; Covariance A+C+E+D | _ | K+L+N+O ; Option RSiduals End Variance females Variance males

Group 7 Title G7: Standardization Calculation Begin Matrices = Group 1; Start.5 all Start 20 M M 2 1 nvar2 Start 20 M M 3 1 nvar2 Start 20 M M 4 1 nvar2 Start 20 M M 5 1 nvar2 Start 20 M M 6 1 nvar2 Begin Algebra; G= A+C+E+D; ! FEMALES total variance J= K+L+N+O; ! MALES total variance P= A%G| C%G| E%G| D%G_ ! FEMALES stand variance components K%J| L%J| N%J| O%J; ! MALES stand variance components End Algebra; Option NDecimals=4 !ADE model Option Sat= , 3633 Option Multiple End

Submodels Last Group Option Sat= , 3633 Option Multiple End Option Issat End ! Test for qualitative sex differences (nature of effect) F ! drop rg End Option Issat End ! Test for quantitative sex differences (magnitude of effect) Equate X S ! a_f = a_m Equate Z U ! e_f = e_m Equate W V ! d_f = d_m End

Exercise Run Sex Limitation Model on 5 groups  ozbmiyade5.mx

Goodness-of-Fit Statistics for BMI in young females+males+DZO -2LLdf 22 pAIC  2 dfp Saturated General Sex Limitation Heterogeneity Homogeneity

Parameter Estimates for BMI in young females+males+DZO femalesmales PathsVar CompPathsVar Comp rgrg afaf efef dfdf af2af2 ef2ef2 df2df2 amam emem dmdm am2am2 em2em2 dm2dm2 General Sex Limitation Heterogeneity Homogeneity

Goodness-of-Fit Statistics for BMI in young females+males+DZO -2LLdf 22 pAIC  2 dfp Saturated General Sex Limitation Heterogeneity Homogeneity

Parameter Estimates for BMI in young females+males+DZO femalesmales PathsVar CompPathsVar Comp rgrg afaf efef dfdf af2af2 ef2ef2 df2df2 amam emem dmdm am2am2 em2em2 dm2dm2 General Sex Limitation Heterogeneity Homogeneity