ADMS 3.3 Modelling (Atmospheric Dispersion Model System)

Slides:



Advertisements
Similar presentations
AIR POLLUTION AND METEOROLOGY
Advertisements

纺纱学. 2 绪 论 基本要求:了解纺纱系统的类别 重点掌握:棉纺系统的工艺流程 3 一、纺纱原理与设备 纺纱:用物理或机械的方法将纺织纤维纺成纱 线的过程。 纺纱原理:初加工、原料的选配、开松除杂、 混和、梳理、精梳、并合、牵伸、加捻、卷绕等。 纺纱方法:传统纺纱方法、新型纺纱方法。 纺纱设备:开清棉联合机、梳棉机、精梳机、
Session 11: Modeling Dispersion of Chemical Hazards, using ALOHA 1 Modeling Dispersion of Chemical Hazards, using ALOHA Prepared by Dr. Erno Sajo, Associate.
Introduction to SCREEN3 smokestacks image from Univ. of Waterloo Environmental Sciences Marti Blad NAU College of Engineering and Technology.
Introduction to SCREEN3 smokestacks image from Univ. of Waterloo Environmental Sciences Marti Blad.
Session 8, Unit 15 ISC-PRIME and AERMOD. ISC-PRIME General info. PRIME - Plume Rise Model Enhancements Purpose - Enhance ISCST3 by addressing ISCST3’s.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
Meteorological Data Issues for Class II Increment Analysis.
2. Dispersion We’re going to move on to the second major step in doing dose assessment.
Session 2, Unit 3 Atmospheric Thermodynamics
ADMS ADMS 3.3 Modelling Summary of Model Features.
Module 9 Atmospheric Stability Photochemistry Dispersion Modeling.
塑 性 加 工 学 实 验 课 件塑 性 加 工 学 实 验 课 件 — 金属室温压缩变形抗力测定及加工硬化分析 南京理工大学材料科学与工程系 制作人:尹德良.
1 AirWare : R elease R5.3 beta AERMOD/AERMET DDr. Kurt Fedra Environmental Software & Services GmbH A-2352 Gumpoldskirchen AUSTRIA
Chap. 8 土壤热量 §1 土壤热量来源与平衡 1 土壤热量来源 ( 1 ) 太阳辐射能 ( 2 ) 生物热 ( 3 ) 地热.
1 第七章 灼热桥丝式电雷管. 1. 热平衡方程 C ℃ 冷却时间 2. 桥丝加热过程 ⑴忽略化学反应惰性方程 ; (2) 为简化集总参数 C, (3) 热损失有两部分 : 轴向与径向 ; 第一种情况 在大功率下忽略热损失, 第二种情况 在输入低功率下 输入 = 散失热量 I I = 3 电容放电时的桥丝温度和发火能量(电容放电下,
影响气候的主要因素、气候 的类型及其分布 第三、四节复习重点:  气候和天气有什么不同?  纬度位置对气候有什么影响?  海陆位置、地形、人类活动对气候有什么 影响?  世界的气候类型有哪些?  你所在的地区属于什么气候类型?
1 热动力装置的排气污染与噪声 第五章 燃气涡轮发动机的排气污染 与控制. 2 第五章燃气涡轮发动机的排气污染与控制  航空发动机排气污染严重 美国 EPA 公布的数字指出:在美国,航 空发动机产生的 NO X 和 CO 占流动污染 源产生 NO X 和 CO 总量的 2% ,但在一些 机场地区,这个比例就上升到了.
电荷传递之处.
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
第七章 无形资产评估 第一节 无形资产评估概述 第二节 无形资产评估的收益法 第三节 无形资产评估的成本法 第四节 无形资产评估的市场法 第五节 专利权和非专利技术评估 第六节 商标权评估 第七节 商誉的评估.
Introduction to the ISC Model Marti Blad NAU College of Engineering.
Derivation of the Gaussian plume model Distribution of pollutant concentration c in the flow field (velocity vector u ≡ u x, u y, u z ) in PBL can be generally.
换热器换热器 反应器反应器. 间壁 热流体 冷流体 热流体 套管换热器 外壳 管板 封头封头 挡板 ( 折流板 ) 封头 列管式换热器列管式换热器 管壳式换热器管壳式换热器.
导体  电子导体  R   L  i 离子导体  ( 平衡 ) mm   .
可逆电动势 可逆电动势必须满足的两个条件 1. 电池中的化学反应可向 正反两方向进行 2. 电池在十分接近平衡 状态下工作 Reversible Electromotive Force (emf)
平衡态电化学 化学电池 浓差电池. 平衡态电化学 膜电势 化学电池浓差电池 电极过程动力学 Electrode Kinetics 极 化 Polarization.
编译原理总结. 基本概念  编译器 、解释器  编译过程 、各过程的功能  编译器在程序执行过程中的作用  编译器的实现途径.
1.2 地理信息技术在区域 地理环境研究中的应用. 地理信息技术: 指获取、管理、分析和 应用地理空间信息的现 代技术的总称。 应用:资源调查、环境监测、自然灾害防御监测、国 土资源管理、国土开规划等。 地理信息 : 遥感 (RS) 、全球定位系统 (GPS) 和地理信息系统 (GIS)
1. 在自然环境的基础上,因人类开发利用不当 而加速的土壤质量和生产力下降的现象和过 程。 2. 土壤数量的减少和质量的降低。 Chap.18 土壤退化与土壤质量 §1 土壤退化的概念.
Calculation of wildfire Plume Rise Bo Yan School of Earth and Atmospheric Sciences Georgia Institute of Technology.
Air Quality Modeling.
EFCOG Safety Analysis Working Group May 10, 2012 Jeremy Rishel Bruce Napier Atmospheric Dispersion Modeling in Safety Analyses: GENII.
Session 4, Unit 7 Plume Rise
AMBIENT AIR CONCENTRATION MODELING Types of Pollutant Sources Point Sources e.g., stacks or vents Area Sources e.g., landfills, ponds, storage piles Volume.
Air Dispersion Primer Deposition begins when material reaches the ground Material from the lower stack reaches the ground before that of the taller stack.
Meteorology & Air Quality Lecture-1
Ashok Kumar Kanwar Siddharth Bhardwaj Abhilash Vijayan
Understanding the USEPA’s AERMOD Modeling System for Environmental Managers Ashok Kumar Abhilash Vijayan Kanwar Siddharth Bhardwaj University of Toledo.
Understanding the USEPA’s AERMOD Modeling System for Environmental Managers Ashok Kumar University of Toledo Introduction.
Meteorology & Air Pollution Dr. Wesam Al Madhoun.
1 Signals and Systems Lecture 26 Properties of Laplace Transform Analysis LTI System using LT System Function.
Session 3, Unit 5 Dispersion Modeling. The Box Model Description and assumption Box model For line source with line strength of Q L Example.
Prof. Jiakuan Yang Huazhong University of Science and Technology Air Pollution Control Engineering.
Stable Atmosphere.
Introduction to Modeling – Part II
Comparison of the AEOLUS3 Atmospheric Dispersion Computer Code with NRC Codes PAVAN and XOQDOQ 13th NUMUG Conference, October 2009, San Francisco, CA.
Air quality models DETERMINISTIC MODELS EULERIAN MODELS
Prof. Jiakuan Yang Huazhong University of Science and Technology Air Pollution Control Engineering.
Types of Models Marti Blad Northern Arizona University College of Engineering & Technology.
Example 2 Chlorine is used in a particular chemical process. A source model study indicates that for a particular accident scenario 1.0 kg of chlorine.
Observed Structure of the Atmospheric Boundary Layer
Summon 学术搜索 陈超然. 全面检索学术资源 庞大检索结果集的快速凝练 精确判定全文获取权限 现有搜索工具的局限(稳定性 / 专业性) 现有文献检索问题及需求.
亚热带常绿阔叶林结构对气候变化及其 区域水文效应的趋势性响应 周 国 逸 中国科学院华南植物园 2013 年 6 月 9-15 日.
院长助理 教务处长 李学锋 教授 2008 年 9 月 9 日 基于工作过程的系统化高职课程建设.
感谢您的关注 联系电话: – 677 手机: QQ :
Meteorology for modeling AP Marti Blad PhD PE. Meteorology Study of Earth’s atmosphere Weather science Climatology and study of weather patterns Study.
Intro to Modeling – Terms & concepts Marti Blad, Ph.D., P.E. ITEP
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
Forecasting smoke and dust using HYSPLIT. Experimental testing phase began March 28, 2006 Run daily at NCEP using the 6Z cycle to produce a 24- hr analysis.
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
TERRAINS Terrain, or land relief, is the vertical and horizontal dimension of land surface. Terrain is used as a general term in physical geography, referring.
Types of Models Marti Blad PhD PE
Consequence Analysis 2.1.
Air Pollution and Control (Elective- I)
Introduction to Modeling – Part II
Meteorology & Air Pollution Dr. Wesam Al Madhoun
Wind Velocity One of the effects of wind speed is to dilute continuously released pollutants at the point of emission. Whether a source is at the surface.
XFlow™ 培训 第 10章 Discrete Phase Model 离散相模型 群QQ:
Presentation transcript:

ADMS 3.3 Modelling (Atmospheric Dispersion Model System) Summary of Model Features

ADMS 3.3 Comprehensive models Features “New Generation” Model Detailed description of atmosphere based on boundary layer properties Features Point, area, line, volume and jet sources Multiple sources and pollutants Buildings and Topography Plume rise Single condition or statistical meteorology Odours, radioactivity, plume visibility Deposition (Wet and Dry) Statistics, long and short term, percentiles

Factors Influencing Dispersion Meteorology Wind Speed and direction Atmospheric stability (Monin–Obukhov Length and Boundary Layer Height) Release point and conditions Elevation (排放高度) Velocity Temperature Ground roughness Buildings If > 1/3 stack height Topography If steeper than 1:10 slope

Meteorology Older Models ADMS Passive dispersion model Pasquill-Gifford Stability Classes (A – G) Wind speed, direction ADMS Boundary Layer Model Boundary layer height Monin – Obukhov length

Meteorological Parameters Boundary Layer Height Height at which surface effects influence dispersion ADMS calculates boundary layer properties for different heights based on meteorology Monin-Obukhov Length Measure of height at which mechanical turbulence (机械湍流) is more significant than convection or stratification(层流) ADMS calculates M-O length based on meteorology and ground roughness

Meteorology Options Specific Data Met Office Data Wind speed, wind direction, date, time, latitude(纬度), boundary layer height, cloud cover Met Office Data Statistical data (10 years) 2200 lines of data (medium run times) Hourly sequential data (1 – 5 years) Can be used to identify specific conditions for known dates and times 8760 lines of data per year (long run times) Use to compare releases against environmental standards (preferred option (首选) by EA)

Boundary Layer Height (m) Monin – Obukhov Length (m) Meteorology Effects Typical atmospheric conditions within the UK. Pasquill - Gifford Stability Classes as modelled in ADMS No exact correlation between boundary layer parameters Stability Class Wind Speed (m/s) Boundary Layer Height (m) Monin – Obukhov Length (m) Conditions A 1 1300 -2 Convective - Hot Still Day B 2 900 -10 Convective C 5 850 -100 D 800 ∞ Neutral - Normal UK Day E 3 400 100 Stable F 20 Stable - Still Night G

Example of A – G Conditions Stack Release SO2,150 g/s 50 m stack 5 m diameter, 20 m/s velocity 15°C

A – G conditions Centre Line Ground Level Concentrations

A1 Conditions Contour Plot Convective - Hot Still Day Stability Class= A; Wind Speed =1m/s; Boundary Layer Height= 1300m; Monin – Obukhov Length =-2)

D5 Conditions Contour Plot Neutral - Normal UK Day Stability Class= D; Wind Speed =5m/s; Boundary Layer Height= 800m; Monin – Obukhov Length = ∞

F2 Conditions Contour Plot Stable - Still Night Stability Class= F; Wind Speed =2m/s; Boundary Layer Height= 100m; Monin – Obukhov Length = 20

Buildings Can have significant effects Entrain (夹卷)pollutants into leeward (下风向) Increased concentrations close to building Decreased concentrations further away Only relevant if building >1/3 stack height ADMS allows 10 buildings

Building Effects – Tall Stack Release of NOx from a 50 m stack (3 m diameter, 5 m/s velocity, 30°C, 1 g/s NOx) Unstable weather conditions Stack is at the centre point of the building Building is 30 m high, 30 m wide, 67 m long

Tall Stack – No Building

Tall Stack – With Building

Building Effects – Short Stack Release of NOx from a 35 m stack (3 m diameter, 5 m/s velocity, 30°C, 1 g/s NOx) Unstable weather conditions Stack is at the centre point of the building Building is 30 m high, 30 m wide, 67 m long

Short Stack - Without Building

Short Stack - With Building

Topography Can effect dispersion Changes plume trajectory May increase or decrease concentrations Include if terrain exceeds 1:10 (maximum 1:3) Terrain data available

Topography Example Release of NOx from a 65 m stack 5 m diameter 5.25 m3/s flowrate 69°C, 1 kg/s NOx Neutral weather conditions 10 m/s wind Boundary layer 1000 m Simple hill 2.6 km to the East and 1 km South of the release

Without Hill

With Hill

3D Hill

Statistical Meteorology 10 years statistical data 1 – 5 years hourly sequential data Can calculate Annual averages Percentiles (百分位数) (worst case conditions) No of exceedences/year (年超标数) Areas affected (影响区域) Direct comparison with NAAQS (Legislation)

Statistical Results

Statistical + Topography Reproduced from Ordnance Survey® Panorama Digital Data, by permission of Ordnance Survey® on behalf of the Controller of Her Majesty’s Stationary Office. © Copyright 1990. All rights reserved. Licence No. 100040193

Digital Maps Available from Ordnance Survey (UK) 1:50000 or 1:10000 Can overlay (覆盖)release contours onto maps

Digital Map Example Reproduced from Ordnance Survey® 1:10K Raster Data, by permission of Ordnance Survey® on behalf of the Controller of Her Majesty’s Stationary Office. © Copyright 1990. All rights reserved. Licence No. 100040193

Digital Map + Topography + Concentrations Reproduced from Ordnance Survey® Panorama Digital Data and1:10K Raster Data, by permission of Ordnance Survey® on behalf of the Controller of Her Majesty’s Stationary Office. © Copyright 1990. All rights reserved. Licence No. 100040193

Odours (气味) Model as Odour Units ADMS ou: Number of times the mixture must be diluted at STP (Place) to reach detection limit of 1 ou. ouE: The mass of pollutant that when evaporated into 1 m3 of gas at STP is 1 ou Information on detection limit is required. ADMS Input and output in terms of ou or ouE.

Odour Example Release from landfill site Odours in ouE Two area sources, one line source Landfill 1: 100 m x 100 m, 10 ouE/m2/s Landfill 2: 100 m x 100 m, 5 ouE/m2/s Line 1: 200 m, 2 ouE/m/s Flat terrain (平原地形), no buildings Neutral conditions 10 m/s wind Boundary layer 1000 m Short term hourly average concentration

Odour Example - Sources

Odour Example - Results

Time Varying Releases (时变源) Release rates often vary with production Time varying releases Hourly sequential meteorological data Details of release for each hour of meteorological data flow, temperature, concentration, velocity Results can differ considerably when compared to average releases

Fluctuations ADMS turbulence calculations Meteorology usually stable over 1 hour Turbulence causes short duration fluctuations Interest in lower times for exposure Odours NAQS (UK)(SO2, 15 minute mean) ADMS turbulence calculations Percentiles Probability distribution function Toxic response (毒性反应)

Other Features Variable surface roughness Treatment of land sea internal boundary layer Puffs NOx Chemistry Radioactive decay Plume visibility (condensed plume)

AERMOD model AERMOD- AMS/EPA Regulatory Model AERMOD was introduced by the US EPA as a Replacement for (取代) Industrial Source Complex (ISC) model for estimating the air quality impact of sources for source–receptor distances of kilometers. AERMOD is designed to use vertical profiles of wind speed and turbulence measured at the site where the model is applied.

AERMOD model AERMOD can accept the following turbulence measurements: standard deviation of the horizontal wind component, sy, and standard deviation of the vertical wind component, sw. There are future plans to include other turbulence parameters. Such meteorological observations are usually not available at most sites of interest, and insisting on site-specific measurements is not practical.

AERMOD model Thus, AERMOD uses a processor (处理模块) to construct inputs from routinely available National Weather Service (NWS) surface and upper air data from nearby locations.

Meandering (扩散) in AERMOD AERMOD accounts for meandering by defining the horizontal concentration distribution, H(x,y), as a linear combination of Gaussian and uniform distributions: where the plume distribution is and the uniform distribution is given by where r is the source–receptor distance. The weighting factor, fp, is taken as the square of the ratio of the mean vector wind speed, U, to the scalar transport wind, Ueff:

Meandering in AERMOD For a source at height hs, the vertical concentration distribution, S(z), is where the vertical plume spread is given by the linear expression

Meandering in AERMOD where the random components u and v are chosen from a normal distribution with a zero mean and a standard deviation of : FROM : A. Venkatram et al. / Atmospheric Environment 38 (2004) 4633–4641; V. Isakov et al. / Atmospheric Environment 41 (2007) 1689–1705

大气新导则会议(2009-3-6) 陕西环境保护局 王厅长讲话 4月1日执行新导则(报告书,审批) 徐大海 Screen 3a model screen3A.exe (dos版)极端情况 确定评价等级 Aermod model 平坦地形,no2, 输入o3浓度

地形,源点,极坐标(r,角) DOS 版,需探空资料,没探空,用地面资料形成;稳态的烟流模式; 高空(无),计算地面浓度较低; 第三代模式;静态模式,老导则的后代产品;探空资料问题?2倍误差 Calpuf模式 完整;考虑地形;50km;复杂流畅;下地面不均匀;Calmet 边界层气象模式;mm5资料(中尺度模式);下地面类型;KSP颗粒模式;光化学模式;能见度模式;流场模式;CALPOST后处理模式

空气质量模式(calpuff,calpost);