Beam transport tunnels from -9.3 to m 3 levels, 310 m 2, 1020 m 3 97 m of beam lines Technical rooms from to m 3 levels, 660 m 2, 1960 m 3 24 rooms Experimental hall from to +5.3 m L*l*H = 43.8x30.3x8.5 m ->1200 m 2, m 3 ~50 m of beam line S 3 Decay station DESIR <10 -8 mbar Quad deflector HT=40-60kV 4keV beam Pulsed drift tube HTHT Pulsed drift HT HT=5-10kV ©◊+©◊ Gas cell S-shaped RFQ Extraction RFQ S 3 beams DC repulsion tension QMS 500 mbar Thermalization Neutralization Gas jet RFQ buncher Isotopic selection (Z) MR-ToF-MS Isobaric purification (A) Z A (Gas cell) (RFQs) (Gas cell, laser system) (Mr-TOF-Ms, laser system infrastructure, safety, RFQs) Pure beams Courtesy of B. Bastin Laser beam (in-gas-jet mode) Laser beam (in-gas-cell mode) REGLIS 3 ANR SPIRAL2 production site: S 3 -LEB RIB production (1+ ions) S 3 -LEB SPIRAL1 Upgrade (ISOL) Fusion-evaporation (mainly) Beam/target fragmentation Thermalization in a gas cell Diffusion/effusion Selective laser ionization ECR, FEBIAD, Surface ionization Mass separation by ToF Beam properties S 3 -LEB SPIRAL1 Upgrade Purity: good ion source dependent Emmittence: < 5 .mm.mrad 3–80 .mm.mrad Time struc. < 1 s bunch, Hz continuous Energy: keV keV Expected Int.: < 10 6 pps < 10 8 pps RIB production (1+ ions) S 3 -LEB SPIRAL1 Upgrade (ISOL) Fusion-evaporation (mainly) Beam/target fragmentation Thermalization in a gas cell Diffusion/effusion Selective laser ionization ECR, FEBIAD, Surface ionization Mass separation by ToF Beam properties S 3 -LEB SPIRAL1 Upgrade Purity: good ion source dependent Emmittence: < 5 .mm.mrad 3–80 .mm.mrad Time struc. < 1 s bunch, Hz continuous Energy: keV keV Expected Int.: < 10 6 pps < 10 8 pps RIBs to DESIR The DESIR GANIL-SPIRAL2 D ésintégration, E xcitation et S tockage d’ I ons R adioactifs Management Structure DESIR Steering Committee IN2P3 - ChairD. Guillemaud Muelller CEA/DSMP. Roussel Chomaz CENBGP. Moretto CSNSMJ. A. Scarpaci GANILM. Lewitowicz IPHCM. Rousseau IPNOF. Azaiez LPCD. Durand CIEMAT MadridC. Lopez-Martinez CSIC Madrid G. Mena-Marugan IFIC ValenciaF. Botella-Olcina JINR DubnaS. Dmitriev K.U. Leuven G. Neyens (Vice chair) LMU MunichP. Thirolf U Manchester J. Billlowes UPC BarcelonaF. Calvino Tavares DESIR Collaboration Council (DECA) DESIR SpokespersonB. Blank (CENBG) DESIR Facility coordinatorJ. C. Thomas (GANIL) CENBGS. Grévy CSNSMD. Lunney GANILP. Delahaye IPHCP. Dessagne IPNOD. Verney LPCCF. Delaunay CIEMAT MadridD. Cano-Ott CSIC Madrid M. Borge IFIC ValenciaJ. L. Tain JINR DubnaY. Penionzkevich K.U. Leuven G. Neyens LMU MunichP. Thirolf U Manchester P. Campbell UPC BarcelonaN.N. Political body Scientific body Experimental setups SPIRAL2 Management SFRE Group DESIR Technical coordinator L. Serani (CENBG) J. C. Thomas EQUIPEX-DESIR Consortium DESIR Facility coordinatorJ. C. Thomas Coordination & InfrastructureGANIL Beam lines IPNO, GANIL, CENBG GPIB + ion sourcesCENBG, GANIL, LPC Id. StationIPHC, LPC Remote controlCENBG Interdisciplinary researchCIMAP Applications: GANIL Construction APS 01/2015 SP1 upgrade Timeline Budget Cost estimates (May 2014): Building (2180 m 2 ): 15.9 M€ Beam lines (140 m): 5.6 M€ Total: 21.5 M€ CPER Funding: SHIRaC+HRS: 1.13 M€ Estimated cost of the experimental equipment: ~5 M€ EQUIPEX Funding (ANR): Construction: 6.7 M€ Beam lines: 1.2 M€ Operation:1.0 M€ Management:0.1 M€ Total: 9 M€ End of APD 07/2015 Construction 10/2016 Building delivery 04/2018 Commissioning01/2019 Operation06/2019 S 3 -LEB 2017 SP2 Ph2 2025? Management 2016 Linac driver 33 MeV p, 40 MeV d (5mA) A/q= A.MeV HI (1mA) NFS S3S3 DESIR GANIL SPIRAL1 upgrade DESIR in the GANIL-SPIRAL2 context DESIR History 12/1998, GANIL SC: “A low-energy facility for SPIRAL” – B. Blank 06/2004: LIRAT commissioning with a 16 O stable beam 07/2005: Workshop “Physics with low-energy beams at SPIRAL2” 06/2006: 1 st LPCTrap experiment at LIRAT ( 6 He 1+ ) 10/2006: Letter of Intent for the DESIR facility 12/2008: DESIR Technical Design Report 01/2011: DESIR LoIs 01/2012: DESIR DECA signed 03/2012: DESIR EQUIPEX funding decision 05/2014: DESIR as part of the SPIRAL2 Phase 1 project GANIL production site: SPIRAL1 Upgrade ECR: Ne, Ar, Kr, N, O, F FEBIAD: Mg, Al, P, S, Cl, Fe, Cu Surf. Ion.: Li, Na, K, Rb 1+ RIB FEBIAD ECR source Courtesy of P. Delahaye 1+ RIB Oven C or Nb target Surface ionization Best reliability Expected yields Beam lines to DESIR Prototype of a quad triplet + steerer sectionDesign of a 45° deflector Courtesy of L. Perrot S 3 -LEB -> DESIR (44 m) Beam envelop simulations – IPN Orsay 122 Sn 60 keV – 80 .mm.mrad SPIRAL1 -> DESIR (50 m) Main caracteristics electrostatic lines, point-to-point transport beams of keV, 3-80 .mm.mrad (2 RMS) S3-LEB->DESIR: 44 m, 2 levels SPIRAL1 -> DESIR: 50 m, 1 level NANOGAN Mass separation HRS desciption Design: QQSQD-M-DQSQQ (x|δ) = cm/% Mirror symmetric (x,y) point-to-point transport Field homogeneity ~10 -5 M/ΔM =20,000 SHIRaC desciption RF: MHz; V pp : 8kV Emittence: ~ 3π mm mrad E ~3eV Transmission ~70 % for 1eµA beam SHIRaC RFQLPC caen HRSCENBG ~8 m ~3,5m Courtesy of T. Kurtukian Nieto, J.F. Cam T. Kurtukian Nieto et al., NIMB 317 (2013) R Boussaid, G. Ban, J.F. Cam and C. Vandamme, 2014 JINST 9 P07009 L. Perrot and H. Cherif, EPJ Web of Conference 66 (2014) Beam preparation Test bench of the GPIB at CENBG Aim: provide users with low-emittance bunched beams (GPIB) and ultra-pure samples of radioactive ions (Penning trap) Location: entrance of the experimental hall Composition: stable ion source General Purpose Ion Buncher and cooler (GPIB) Double Penning trap system Expected performances: GPIB: ions/bunch, 100 Hz 3 .mm.mrad Penning trap : 10 5 ions/bunch, 2-20 Hz M/ΔM = 10 5 Double Penning trap P. Ascher et al., EPJ Web of Conference 66 (2014) Courtesy of S. Grévy The DTRAP facility A RFQ-CB associated with a Paul trap -> - angular correlation coefficient -> Shake-off probability in decay -> D correlation with laser polarized beams MLLTrap C. Weber et al., Int. J. Mass Spectrom , 270 (2013) e - pixel detector A MR-ToF-MS associated with a 7T Penning trap -> mass measurements (DM/M~ ) of pure samples -> In-trap e- and spectroscopy Nuclear structure & Decay properties shell evolution, deformation (super-) heavy nuclei decay spectroscopy LPCTrap e+e+ e nucleus Fundamental physics exotic currents, CVC, V ud, T-invariance atomic physics E. Liénard et al., LPC Caen P. Thirolf et al., LMU Munich The BESTIOL facility BEta decay STudies at the SPIRAL2 IsOL facilty M.J.G. Borge, CSIC Madrid - Coll. France, Spain, Russia Beam cooling and purification using PIPERADE for (Trap-assisted) Decay spectroscopy -> High-precision measurements with utra-pure samples using: - decay stations (BEDO, …) Full absorption spectrometers (DTAS) neutron detection arrays (BELEN, TETRA, MONSTER, …) Astrophysics, Fundamental interaction, nuclear structure, decay properties CVC, V ud lifetimes, P (2)n exotic decays ( -2p, cluster emission) Gamow-Teller strength DTAS SiCube TETRA BELENBEDO MONSTER The LUMIERE facility Laser Utilization for Measurement and Ionization of Exotic Radioactive Elements D. Yordanov, IPNO - Coll. France, Belgium, UK 2 laser lines: Collinear laser spectroscopy by resonant ionization -> hyperfine structure (magnetic and quadrupole moments, mean square charge radii) Optical pumping line -> -NMR, -decay spectroscopy of laser polarized beams (spins) 2 ConeTraps: laser spectroscopy on trapped ions Static moments, shape evolution, nuclear structure CRIS line at ISOLDE LINO at ALTO DESIR Experimental setups (DECA) DESIR scientific program Collinear laser spectroscopy -delayed spectroscopy - angular correlation Mass measurement -delayed charge part., -n Emission (Trap-assisted) -decay, Full absorption spectroscopy, DESIR scientific program Collinear laser spectroscopy -delayed spectroscopy - angular correlation Mass measurement -delayed charge part., -n Emission (Trap-assisted) -decay, Full absorption spectroscopy, S 3 -LEB SPIRAL 1 Upgrade SPIRAL 2 Phase 2 LUMIERE DTRAP BESTIOL